期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
System error iterative identification for underwater positioning based on spectral clustering
1
作者 LU Yu WANG Jiongqi +3 位作者 HE Zhangming ZHOU Haiyin XING Yao ZHOU Xuanying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期1028-1041,共14页
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri... The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning. 展开更多
关键词 acoustic positioning reduced parameter system error identification improved spectral clustering accuracy analy-sis
下载PDF
Identification of Convective and Stratiform Clouds Based on the Improved DBSCAN Clustering Algorithm 被引量:5
2
作者 Yuanyuan ZUO Zhiqun HU +3 位作者 Shujie YUAN Jiafeng ZHENG Xiaoyan YIN Boyong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2203-2212,共10页
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clo... A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage. 展开更多
关键词 improved DBSCAN clustering algorithm cloud identification and classification 2D model 3D model weather radar
下载PDF
Color image segmentation using mean shift and improved ant clustering 被引量:3
3
作者 刘玲星 谭冠政 M.Sami Soliman 《Journal of Central South University》 SCIE EI CAS 2012年第4期1040-1048,共9页
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ... To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability. 展开更多
关键词 color image segmentation improved ant clustering graph partition mean shift
下载PDF
Fuzzy Fruit Fly Optimized Node Quality-Based Clustering Algorithm for Network Load Balancing
4
作者 P.Rahul N.Kanthimathi +1 位作者 B.Kaarthick M.Leeban Moses 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1583-1600,共18页
Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of th... Recently,the fundamental problem with Hybrid Mobile Ad-hoc Net-works(H-MANETs)is tofind a suitable and secure way of balancing the load through Internet gateways.Moreover,the selection of the gateway and overload of the network results in packet loss and Delay(DL).For optimal performance,it is important to load balance between different gateways.As a result,a stable load balancing procedure is implemented,which selects gateways based on Fuzzy Logic(FL)and increases the efficiency of the network.In this case,since gate-ways are selected based on the number of nodes,the Energy Consumption(EC)was high.This paper presents a novel Node Quality-based Clustering Algo-rithm(NQCA)based on Fuzzy-Genetic for Cluster Head and Gateway Selection(FGCHGS).This algorithm combines NQCA with the Improved Weighted Clus-tering Algorithm(IWCA).The NQCA algorithm divides the network into clusters based upon node priority,transmission range,and neighbourfidelity.In addition,the simulation results tend to evaluate the performance effectiveness of the FFFCHGS algorithm in terms of EC,packet loss rate(PLR),etc. 展开更多
关键词 Ad-hoc load balancing H-MANET fuzzy logic system genetic algorithm node quality-based clustering algorithm improved weighted clustering fruitfly optimization
下载PDF
Integration Interval Determination and Decision Threshold Optimization for Improved TRPC-UWB Communication Systems 被引量:2
5
作者 Zhonghua Liang Junshan Zang +2 位作者 Xiaojun Yang Xiaodai Dong Huansheng Song 《China Communications》 SCIE CSCD 2017年第5期185-192,共8页
Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) perfo... Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis. 展开更多
关键词 ultra-wideband (UWB) improved transmitted reference pulse cluster (iTRPC) integration interval determination (IID) adaptive decision threshold (ADT)
下载PDF
Fault Diagnosis in a Hydraulic Position Servo System Using RBF Neural Network 被引量:10
6
作者 刘红梅 王少萍 欧阳平超 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期346-353,共8页
Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fa... Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure detection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates accurately the output of the system. By comparing the estimated outputs with the actual measurements, the residual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural network can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering algorithm and a self-adaptive adjustment algorithm of learning rate arc presented, which obtain the optimum learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the convergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in detecting and localizing the failure of the hydraulic position servo system. 展开更多
关键词 failure diagnosisl hydraulic servo system two-stage RBF neural nctwork improved K-means clustering algorithm
下载PDF
A genetic diversity assessment of starch quality traits in rice landraces from the Taihu basin,China 被引量:5
7
作者 AO Yan XU Yong +4 位作者 CUI Xiao-fen WANG An TENG Fei SHEN Li-qun LIU Qiao-quan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期493-501,共9页
There are nearly 1 000 rice landrace varieties in the Taihu basin, China. To assess the genetic diversity of the rice, 24 intragenic molecular markers(representing 17 starch synthesis-related genes) were investigate... There are nearly 1 000 rice landrace varieties in the Taihu basin, China. To assess the genetic diversity of the rice, 24 intragenic molecular markers(representing 17 starch synthesis-related genes) were investigated in 115 Taihu basin rice landraces and 87 improved cultivars simultaneously. The results show that the average genetic diversity and polymorphism information content values of the landraces were higher than those of improved cultivars. In total, 41 and 39 allele combinations(of the 17 genes) were derived from the landraces and improved cultivars, respectively; only two identical allele combinations were found bet ween the two rice variety sources. Cluster analysis, based on the molecular markers, revealed that the rice varieties could be subdivided into five groups and, within these, the japonica improved rice and japonica landrace rice varieties were in two separate groups. According to the quality reference criteria to classify the rice into grades, some of the landraces were found to perform we ll, in terms of starch quality. For example, according to NY /T595-2002 criteria from the Ministry of Agriculture of China, 25 and 33 landraces reached grade 1, in terms of their apparent amylose content and gel consistency. Th e varieties that had outstanding quality could be used as breeding materials for rice quality breeding programs in the future. Our study is useful for future applications, such as genetic diversity studies, the protection of rice variety and improvment of rice quality in breeding programs. 展开更多
关键词 intragenic molecular marker starch synthesis improved cultivars cluster analysis polymorphism information content
下载PDF
FUZZY ECCENTRICITY AND GROSS ERROR IDENTIFICATION 被引量:1
8
作者 YE Bing FEI Yetai LIAO Benqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期143-145,共3页
The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipol... The dominant and recessive effect made by exceptional interferer is analyzed in measurement system based on responsive character, and the gross error model of fuzzy clustering based on fuzzy relation and fuzzy equipollance relation is built. The concept and calculate formula of fuzzy eccentricity are defined to deduce the evaluation rule and function ofgruss error, on the base of them, a fuzzy clustering method of separating and discriminating the gross error is found, utilized in the dynamic circular division measurement system, the method can identify and eliminate gross error in measured data, and reduce measured data dispersity. Experimental results indicate that the use of the method and model enables repetitive precision of the system to improve 80% higher than the foregoing system, to reach 3.5 s, and angle measurement error is less than 7 s. 展开更多
关键词 Fuzzy clustering Gross error model Fuzzy eccentricity Repetitive precision improvement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部