期刊文献+
共找到629篇文章
< 1 2 32 >
每页显示 20 50 100
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
1
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
2
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Estimation of state of health based on charging characteristics and back-propagation neural networks with improved atom search optimization algorithm 被引量:2
3
作者 Yu Zhang Yuhang Zhang Tiezhou Wu 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期228-237,共10页
With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an import... With the rapid development of new energy technologies, lithium batteries are widely used in the field of energy storage systems and electric vehicles. The accurate prediction for the state of health(SOH) has an important role in maintaining a safe and stable operation of lithium-ion batteries. To address the problems of uncertain battery discharge conditions and low SOH estimation accuracy in practical applications, this paper proposes a SOH estimation method based on constant-current battery charging section characteristics with a back-propagation neural network with an improved atom search optimization algorithm. A temperature characteristic, equal-time temperature variation(Dt_DT), is proposed by analyzing the temperature data of the battery charging section with the incremental capacity(IC) characteristics obtained from an IC analysis as an input to the data-driven prediction model. Testing and analysis of the proposed prediction model are carried out using publicly available datasets. Experimental results show that the maximum error of SOH estimation results for the proposed method in this paper is below 1.5%. 展开更多
关键词 State of health Lithium-ion battery Dt_DT improved atom search optimization algorithm
下载PDF
Classification for Glass Bottles Based on Improved Selective Search Algorithm
4
作者 Shuqiang Guo Baohai Yue +2 位作者 Manyang Gao Xinxin Zhou Bo Wang 《Computers, Materials & Continua》 SCIE EI 2020年第7期233-251,共19页
The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in spe... The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection.At present,the classification of recycled glass bottles is difficult due to the many differences in specifications and models.This paper proposes a classification algorithm for glass bottles that is divided into two stages,namely the extraction of candidate regions and the classification of classifiers.In the candidate region extraction stage,aiming at the problem of the large time overhead caused by the use of the SIFT(scale-invariant feature transform)descriptor in SS(selective search),an improved feature of HLSN(Haar-like based on SPP-Net)is proposed.An integral graph is introduced to accelerate the process of forming an HBSN vector,which overcomes the problem of repeated texture feature calculation in overlapping regions by SS.In the classification stage,the improved SS algorithm is used to extract target regions.The target regions are merged using a non-maximum suppression algorithm according to the classification scores of the respective regions,and the merged regions are classified using the trained classifier.Experiments demonstrate that,compared with the original SS,the improved SS algorithm increases the calculation speed by 13.8%,and its classification accuracy is 89.4%.Additionally,the classification algorithm for glass bottles has a certain resistance to noise. 展开更多
关键词 Classification of glass bottle HBSN feature improved selective search algorithm LightGBM
下载PDF
Improved hyper-spherical search algorithm for voltage total harmonic distortion minimization in 27-level inverter
5
作者 A A KHODADOOST ARANI H KARAMI +1 位作者 B VAHIDI G B GHAREHPETIAN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2822-2832,共11页
Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special... Multi-level inverters(MLIs)have become popular in different applications such as industrial power control systems and distributed generations.There are different forms of MLIs.The cascaded MLIs(CMLIs)have some special advantages among them such as more different output voltage levels using the same number of components and higher power quality.In this paper,a 27-level inverter switching algorithm considering total harmonic distortion(THD)minimization is investigated.Switching angles of the inverter switches are achieved by minimizing a THD-based objective function.In order to minimize the THD-based objective function,the hyper-spherical search(HSS)algorithm,as a novel optimization algorithm,is improved and the results of improved HSS(IHSS)are compared with HSS algorithm and other five evolutionary algorithms to show the advantages of IHSS algorithm. 展开更多
关键词 27-level inverter cascade multi-level inverter improved hyper-spherical search(IHSS)algorithm total harmonic distortion(THD)minimization
下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network
6
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
下载PDF
Symmetric Workpiece Localization Algorithms: Convergence and Improvements 被引量:2
7
作者 CHEN Shan-Yong LI Sheng-Yi DAI Yi-Fan 《自动化学报》 EI CSCD 北大核心 2006年第3期428-432,共5页
Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each sub... Symmetric workpiece localization algorithms combine alternating optimization and linearization. The iterative variables are partitioned into two groups. Then simple optimization approaches can be employed for each subset of variables, where optimization of configuration variables is simplified as a linear least-squares problem (LSP). Convergence of current symmetric localization algorithms is discussed firstly. It is shown that simply taking the solution of the LSP as start of the next iteration may result in divergence or incorrect convergence. Therefore in our enhanced algorithms, line search is performed along the solution of the LSP in order to find a better point reducing the value of objective function. We choose this point as start of the next iteration. Better convergence is verified by numerical simulation. Besides, imposing boundary constraints on the LSP proves to be another efficient way. 展开更多
关键词 对称加工件 局限性 线性搜索 收敛性
下载PDF
Improved Interleaved Single-Ended Primary Inductor-Converter forSingle-Phase Grid-Connected System
8
作者 T.J.Thomas Thangam K.Muthu Vel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3459-3478,共20页
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr... The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed. 展开更多
关键词 improved interleaved DC-DC SEPIC converter crow search algorithm PI controller voltage source inverter PV array single phase grid
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
9
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
基于改进布谷鸟搜索算法的压气机特性曲线预测
10
作者 王巍 李哲 +3 位作者 刘祎阳 姜孝谟 刘朋 李士龙 《推进技术》 北大核心 2025年第1期219-227,共9页
为了提高压气机特性曲线的预测精度和边界工况点的泛化能力,本文提出了一种改进布谷鸟搜索算法优化BP(ICS-BP)的模型,应用于某轴流压气机流量-压比特性预测方法研究,并对比分析了采用传统BP、遗传算法优化BP(GA-BP)、布谷鸟搜索算法优化... 为了提高压气机特性曲线的预测精度和边界工况点的泛化能力,本文提出了一种改进布谷鸟搜索算法优化BP(ICS-BP)的模型,应用于某轴流压气机流量-压比特性预测方法研究,并对比分析了采用传统BP、遗传算法优化BP(GA-BP)、布谷鸟搜索算法优化BP(CS-BP)、径向基函数神经网络(RBF)、极限学习机(ELM)、自优化支持向量机(MSVM)和ICS-BP模型的预测结果。分析显示,ICS-BP模型整体预测结果的相对误差最小,普遍在±1%以内,评价指标展现出最高的精度和鲁棒性,预测结果具有最佳的泛化能力,且优化后的模型解决BP易陷入局部最优的问题;ELM和RBF模型运行速度较快的情况下依然具有良好的整体预测精度,但对于边界工况点预测效果欠佳,适用于对时间成本要求高的场景。针对7F重型燃气轮机和NASA74A型号压气机特性曲线,通过ICS-BP模型预测的压比特性精度较高,整体预测结果的平均绝对百分误差分别为1.129%和0.590%,进一步验证了其在特性预测方面的优势。 展开更多
关键词 压气机特性 曲线预测 改进布谷鸟搜索算法 神经网络 泛化能力
下载PDF
基于自适应模型降阶的三维非线性磁场快速计算方法
11
作者 刘禹彤 任自艳 +2 位作者 迟连强 张殿海 张艳丽 《电工技术学报》 北大核心 2025年第1期1-12,共12页
为了解决有限元法(FEM)仿真分析中三维非线性磁场计算效率低、成本高的问题,该文提出一种基于本征正交分解(POD)的三维非线性磁场问题自适应模型降阶方法。该方法基于贪婪策略,将POD与径向基函数(RBF)相结合,同时采用改进的麻雀搜索算法... 为了解决有限元法(FEM)仿真分析中三维非线性磁场计算效率低、成本高的问题,该文提出一种基于本征正交分解(POD)的三维非线性磁场问题自适应模型降阶方法。该方法基于贪婪策略,将POD与径向基函数(RBF)相结合,同时采用改进的麻雀搜索算法(ISSA)计算RBF的最优宽度参数组合,构建更适配高阶系统的降阶模型。以TEAM24标准问题——非线性时变旋转实验装置的磁场模型和一台单相牵引变压器模型为算例,验证降阶模型的高效性能。结果表明:该方法在具有较高精度的同时具有高加速比,建立的模型具有较好的可泛化性。 展开更多
关键词 本征正交分解 改进的麻雀搜索算法 模型降阶 贪婪算法 三维非线性磁场
下载PDF
一种改进的Tabu Search算法及其在区域电网无功优化中的应用 被引量:4
12
作者 李益华 林文南 《电力科学与技术学报》 CAS 2008年第2期60-65,共6页
提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动&qu... 提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动"采取"有条件地释放Tabu表中的记录"这一策略,可以使搜索有效地跳出局部极小值点,更好地找到最优解.通过IEEE-14节点算例验证了该算法的有效性. 展开更多
关键词 无功优化 区域电网 改进Tabu搜索算法
下载PDF
基于相似日与ISC-BiLSTM的短期光伏功率预测方法
13
作者 杨轶航 韩璐 +3 位作者 史华勃 邓鑫隆 陈梓桐 孙如田 《太阳能学报》 北大核心 2025年第1期676-685,共10页
针对传统光伏功率预测方法的精度和鲁棒性难以兼顾的不足,提出一种结合相似日理论、改进麻雀算法(ISSA)与SE通道注意力机制的卷积(CNN)双向长短期记忆(BiLSTM)神经网络模型(简写为ISC-BiLSTM),能实现短期光伏功率的准确预测。该方法首... 针对传统光伏功率预测方法的精度和鲁棒性难以兼顾的不足,提出一种结合相似日理论、改进麻雀算法(ISSA)与SE通道注意力机制的卷积(CNN)双向长短期记忆(BiLSTM)神经网络模型(简写为ISC-BiLSTM),能实现短期光伏功率的准确预测。该方法首先通过相关性计算,筛选出影响光伏功率的主要气象因子;再使用模糊C均值聚类(FCM)方法对存在相似天气特征的相似日进行聚类;然后通过加入SE的CNN对主要气象参数与历史功率的时空特征进行充分提取;接着利用BiLSTM对数据序列间的依赖关系进行捕捉;最后通过ISSA对模型的超参数进行寻优,并选择超参数最优的模型进行功率预测。对比实验与仿真结果表明,该方法预测误差较低,能实现日前分钟级短期光伏功率的准确预测。 展开更多
关键词 光伏发电 预测 神经网络 注意力机制 改进麻雀算法 模糊聚类
下载PDF
一种改进型A^(*)算法的AGV路径规划
14
作者 洪楚桐 郭彦青 +2 位作者 张盼盼 康瑞 马鹏豪 《机械设计与制造工程》 2025年第1期51-54,共4页
A^(*)算法是一种常见的AGV路径规划算法,然而当AGV的运动环境很复杂时,A^(*)算法的效率会显著下降。针对传统A^(*)算法存在路径搜索效率低、路径转折次数多等问题,提出一种改进型A^(*)算法。首先基于栅格法对地图进行建模,随后对A^(*)... A^(*)算法是一种常见的AGV路径规划算法,然而当AGV的运动环境很复杂时,A^(*)算法的效率会显著下降。针对传统A^(*)算法存在路径搜索效率低、路径转折次数多等问题,提出一种改进型A^(*)算法。首先基于栅格法对地图进行建模,随后对A^(*)算法的启发函数和邻域搜索策略展开研究,引入动态加权机制改进启发函数,并在此基础上加入动态五邻域搜索策略。最后在Python编程环境下,分别使用两种不同障碍率的栅格地图对改进型A^(*)算法与传统A^(*)算法进行对比仿真实验。仿真结果表明,改进型A^(*)算法搜索时间平均缩短了69.3%,路径拓展节点数平均减少了74.5%,可以明显减少转弯次数,提升整体效率,尤其是在障碍率较高时优化效果更明显;引入贝塞尔曲线后,可使移动路径更加平滑。 展开更多
关键词 自动导向车 路径规划 改进型A^(*)算法 动态加权 搜索邻域 贝塞尔曲线
下载PDF
基于麻雀搜索算法和长短期记忆神经网络的轨道交通站点客流预测
15
作者 张开雯 何勇 +1 位作者 余家香 陈林 《四川师范大学学报(自然科学版)》 CAS 2025年第1期105-113,共9页
准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度... 准确的短时客流预测可以为城市轨道交通的良好运营提供保障,但轨道交通的短时客流具有非线性和高随机性等特点,为了提高对短时客流的预测精度,提出将ISSA算法和LSTM模型进行组合,构建城市轨道交通短时客流预测模型.针对SSA算法收敛速度慢,容易陷入局部最优解的问题,引入黄金莱维飞行策略,通过动态调整探索者移动步长的方法,使得它在未知范围内搜索时,能够覆盖更大的范围,提高SSA算法全局搜索的能力.通过使用ISSA算法对LSTM模型的隐含层、学习率和迭代次数的神经元个数进行优化,构建ISSA-LSTM组合预测模型,用于城市轨道交通短时客流的预测.将该模型与BP、LSTM和SSA-LSTM等3种短时客流预测模型进行对比,结果表明:在针对工作日和非工作日客流的预测中,ISSA-LSTM模型预测误差最小,具有较好的预测效果. 展开更多
关键词 短时客流预测 改进麻雀搜索算法 长短时记忆神经网络 组合模型
下载PDF
基于ISSA-Stacking集成学习的共享单车租赁量预测
16
作者 张泽 韩晓明 韩晓霞 《控制工程》 北大核心 2025年第1期39-50,共12页
针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型。首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,... 针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型。首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,建立多种异质回归预测模型并采用ISSA对各模型的关键超参数进行优化,通过引入精英反向学习策略和自适应种群比例因子来提高麻雀搜索算法的全局搜索能力和收敛速度;最后,利用Stacking算法的集成学习思想对各模型进行融合。实验使用美国华盛顿地区的共享单车出行数据进行租赁量预测,通过对比分析验证了所提融合模型相比单一模型在共享单车租赁量预测方面具有更高的预测精度。 展开更多
关键词 共享单车租赁量预测 集成学习 改进麻雀搜索算法 特征选择
下载PDF
带忽略工序的多目标批量流混合流水车间调度
17
作者 李浩平 朱成彪 +5 位作者 陈心怡 彭巍 孟荣华 金朱鸿 杜昕毅 蔡浏阳 《计算机集成制造系统》 北大核心 2025年第1期89-101,共13页
针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框... 针对带忽略工序的批量流混合流水车间调度问题,在考虑批次切换调整时间的情况下,以最小化完工时间和机床负荷平衡为优化目标,建立柔性批量分割和调度集成优化模型,提出一种双层改进PSO-GA混合算法。算法提出批量和机器的双层搜索求解框架,外层进行柔性分批,内层搜索排序及调度方案。针对批量分割、工件批排序、机器分配3个问题,设计基于批量、工序和机器的三段式编码,内层将狼群算法的分级和游走策略引入粒子群算法,设计了一种基于PBX(Position-based Crossover)交叉操作的围攻策略以提高算法的局部搜索及寻优能力。通过仿真实验并与几种启发式算法进行对比及实例验证,说明了调度模型和算法的可行性和优越性。 展开更多
关键词 批量流 混合流水车间调度 忽略工序 改进PSO-GA混合算法 双层搜索框架 柔性分批
下载PDF
基于物理信息神经网络的长距离顶管施工顶力预测
18
作者 李博 刘宇翔 +2 位作者 陈建国 杨耀红 张哲 《人民长江》 北大核心 2025年第1期147-155,共9页
长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网... 长距离顶管施工过程中,准确预测顶力是有效控制施工安全质量及进度的关键问题。基于知识数据融合的机器学习建模方法,将顶力计算物理模型与多层感知机相融合,构建了物理-数据双驱动的物理信息神经网络模型(PINN),用物理机制约束神经网络的训练机制,并引入改进的麻雀搜索算法(ISSA)对模型超参数取值进行优化,建立了ISSA-PINN顶管施工顶力预测模型;以河南省郑开同城东部供水工程顶管施工为例,选取524组工程实测数据验证了模型的有效性。计算结果表明:ISSA-PINN模型具有较高的预测精度,相较于单纯数据驱动模型,在测试集和新数据集中的预测性能分别提升了0.07和0.17,说明物理模型的融入对降低机器模型的过拟合风险和提高泛化能力有积极影响;相比于SSA和粒子群算法,ISSA算法寻优速度更快、适应度更好。研究结果可为顶管工程施工顶力控制提供参考。 展开更多
关键词 顶管施工 顶力预测 物理信息神经网络(PINN) 改进麻雀搜索算法(ISSA)
下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
19
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
下载PDF
The Objective Function Value Optimization of Cloud Computing Resources Security Allocation of Artificial Firefly Algorithm
20
作者 Xiaoxi Hu 《Open Journal of Optimization》 2015年第2期40-46,共7页
Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources secur... Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency. 展开更多
关键词 Cloud Computing RESOURCES SECURITY Distribution improved Artificial FIREFLY algorithm Complex Method Local search OPERATOR
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部