期刊文献+
共找到913篇文章
< 1 2 46 >
每页显示 20 50 100
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
1
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
2
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem 被引量:26
3
作者 CHEN Ai-ling YANG Gen-ke WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期607-614,共8页
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp... Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems. 展开更多
关键词 Capacitated routing problem discrete particle swarm optimization (dpso Simulated annealing (SA)
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
4
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
Service composition based on discrete particle swarm optimization in military organization cloud cooperation 被引量:2
5
作者 An Zhang Haiyang Sun +1 位作者 Zhili Tang Yuan Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期590-601,共12页
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users... This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA). 展开更多
关键词 service composition cloud cooperation discrete particle swarm optimization(dpso
下载PDF
RESEARCH ON OPTIMIZING THE MERGING RESULTS OF MULTIPLE INDEPENDENT RETRIEVAL SYSTEMS BY A DISCRETE PARTICLE SWARM OPTIMIZATION 被引量:1
6
作者 XieXingsheng ZhangGuoliang XiongYan 《Journal of Electronics(China)》 2012年第1期111-119,共9页
The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existi... The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existing result merging methods, usually suffered a great influence from the usefulness weight of different IRRS results and overlap rate among them. In this paper, we proposed a scheme that being capable of coalescing and optimizing a group of existing multi-sources-retrieval merging results effectively by Discrete Particle Swarm Optimization (DPSO). The experimental results show that the DPSO, not only can overall outperform all the other result merging algorithms it employed, but also has better adaptability in application for unnecessarily taking into account different IRRS's usefulness weight and their overlap rate with respect to a concrete query. Compared to other result merging algorithms it employed, the DPSO's recognition precision can increase nearly 24.6%, while the precision standard deviation for different queries can decrease about 68.3%. 展开更多
关键词 Multiple resource retrievals Result merging Meta-search engine discrete particleswarm optimization (dpso
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
7
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Dynamic Weapon Target Assignment Based on Intuitionistic Fuzzy Entropy of Discrete Particle Swarm 被引量:17
8
作者 Yi Wang Jin Li +1 位作者 Wenlong Huang Tong Wen 《China Communications》 SCIE CSCD 2017年第1期169-179,共11页
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz... Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem. 展开更多
关键词 intuitionistic fuzzy entropy discrete particle swarm optimization algorithm 0-1 knapsack problem weapon target assignment
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:15
9
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
10
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
下载PDF
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
11
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Study on attitude determination based on discrete particle swarm optimization 被引量:1
12
作者 VU Khuong 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第12期3397-3403,共7页
Attitude determination is a key technology in aerospace, sailing and land-navigation etc. In the method of double difference phase measurement, it is a crucial topic to solve the carrier phase integer ambiguity, which... Attitude determination is a key technology in aerospace, sailing and land-navigation etc. In the method of double difference phase measurement, it is a crucial topic to solve the carrier phase integer ambiguity, which is shown to be a combination optimization problem, and thus efficient heuristic algorithms are needed. In this paper, we propose a discrete particle swarm optimization (DPSO)-based solution which aims at searching for the optimal integer ambiguity directly without decorrelation of ambiguity, and computing the baseline vector consequently. A novel flat binary particle encoding approach and corresponding revision operation are presented. Furthermore, domain knowledge is incorporated to significantly improve the convergence rate. Through extensive experiments, we demonstrate that the proposed algorithm outperforms a classic algorithm by up to 80% in time efficiency with solution quality guaranteed. The experiment results show that this algorithm is efficient, robust, and suitable for dynamic attitude determination. 展开更多
关键词 ATTITUDE determination discrete particle swarm optimization (dpso) INTEGER AMBIGUITY
原文传递
Optimal Allocation of a Hybrid Wind Energy-Fuel Cell System Using Different Optimization Techniques in the Egyptian Distribution Network
13
作者 Adel A. Abou El-Ela Sohir M. Allam Nermine K. Shehata 《Energy and Power Engineering》 2021年第1期17-40,共24页
This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distributio... This paper presents an optimal proposed allocating procedure for hybrid wind energy combined with proton exchange membrane fuel cell (WE/PEMFC) system to improve the operation performance of the electrical distribution system (EDS). Egypt has an excellent wind regime with wind speeds of about 10 m/s at many areas. The disadvantage of wind energy is its seasonal variations. So, if wind power is to supply a significant portion of the demand, either backup power or electrical energy storage (EES) system is needed to ensure that loads will be supplied in reliable way. So, the hybrid WE/PEMFC system is designed to completely supply a part of the Egyptian distribution system, in attempt to isolate it from the grid. However, the optimal allocation of the hybrid units is obtained, in order to enhance their benefits in the distribution networks. The critical buses that are necessary to install the hybrid WE/ PEMFC system, are chosen using sensitivity analysis. Then, the binary Crow search algorithm (BCSA), discrete Jaya algorithm (DJA) and binary particle swarm optimization (BPSO) techniques are proposed to determine the optimal operation of power systems using single and multi-objective functions (SOF/MOF). Then, the results of the three optimization techniques are compared with each other. Three sensitivity factors are employed in this paper, which are voltage sensitivity factor (VSF), active losses sensitivity factor (ALSF) and reactive losses sensitivity factor (RLSF). The effects of the sensitivity factors (SFs) on the SOF/MOF are studied. The improvement of voltage profile and minimizing active and reactive power losses of the EDS are considered as objective functions. Backward/forward sweep (BFS) method is used for the load flow calculations. The system load demand is predicted up to year 2022 for Mersi-Matrouh City as a part of Egyptian distribution network, and the design of the hybrid WE/PEMFC system is applied. The PEMFC system is designed considering simplified mathematical expressions. The economics of operation of both WE and PEMFC system are also presented. The results prove the capability of the proposed procedure to find the optimal allocation for the hybrid WE/PEMFC system to improve the system voltage profile and to minimize both active and reactive power losses for the EDS of Mersi-Matrough City. 展开更多
关键词 Wind Energy System Proton Exchange Membrane Fuel Cell Binary Crow Search algorithm discrete Jaya algorithm Binary particle swarm optimization Technique
下载PDF
基于改进DPSO非退出故障下多无人机任务规划 被引量:1
14
作者 邵士凯 李厚振 赵渊洁 《科学技术与工程》 北大核心 2023年第32期14030-14040,共11页
针对非退出故障下多无人机(unmanned aerial vehicle,UAV)协同任务规划问题,提出了一种基于混合策略改进的离散粒子群算法(mixed strategy improved discrete particle swarm optimization,MSDPSO)。该方法首先采用Sobol序列进行种群初... 针对非退出故障下多无人机(unmanned aerial vehicle,UAV)协同任务规划问题,提出了一种基于混合策略改进的离散粒子群算法(mixed strategy improved discrete particle swarm optimization,MSDPSO)。该方法首先采用Sobol序列进行种群初始化,提高解空间的覆盖率;然后,提出非线性时变策略,加快算法的收敛速度;并引入柯西算子,增强离散粒子群算法的搜索空间;同时,还提出自适应交叉学习策略,丰富种群多样性,进而提升算法的全局寻优能力。综合改进的离散粒子群算法不仅加快了收敛速度,并且解的最优性也得到了提高。此外,运用三次样条插值算法进行无人机航迹规划,最后,将改进算法在三维空间中进行无人机故障前后的对比仿真实验,结果表明:所设计的算法具有显著的寻优有效性,为部分无人机发生轻微故障后,多机协同执行任务规划的问题提供了理论依据。 展开更多
关键词 多机协同 混合策略改进的离散粒子群算法(MSdpso) Sobol序列初始化 自适应交叉学习策略 三次样条插值算法
下载PDF
基于改进DPSO的故障下多无人机协同任务规划
15
作者 邵士凯 李厚振 赵渊洁 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第6期213-222,共10页
针对故障后多无人机协同任务规划问题,提出了一种基于改进离散粒子群算法并结合匈牙利算法的任务重分配方法。首先,采用匈牙利算法进行故障下无人机队形的快速重新排列;然后,引入柯西算子提升离散粒子群算法的全局搜索能力,以增强搜索空... 针对故障后多无人机协同任务规划问题,提出了一种基于改进离散粒子群算法并结合匈牙利算法的任务重分配方法。首先,采用匈牙利算法进行故障下无人机队形的快速重新排列;然后,引入柯西算子提升离散粒子群算法的全局搜索能力,以增强搜索空间,同时,还提出了非线性时变的变异策略,加快算法的收敛速度,综合改进的离散粒子群算法不仅加快了收敛速度,并且解的最优性也得到了提高,此外,在分配过程中,考虑了环境障碍信息,分配结果更贴近实际也更加合理;最后,运用基本粒子群算法进行无人机的航迹规划,并在三维空间中进行了仿真实验,结果表明:所设计的算法能够有效提升任务分配的寻优结果,为多无人机出现故障后协同任务分配问题提供了理论依据。 展开更多
关键词 无人机故障 任务分配 多机协同 改进离散粒子群算法 柯西算子 非线性时变变异策略 匈牙利算法
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
16
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
基于改进引力搜索算法的水轮机调节系统仿真 被引量:1
17
作者 潘虹 杭晨阳 郑源 《排灌机械工程学报》 CSCD 北大核心 2024年第1期8-13,共6页
针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新... 针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新公式中引入学习因子进行改进.其次,应用一种权重系数优化其位置更新公式,提高算法的自适应性.最后,结合相关仿真建模试验,使用所提改进PSOGSA对水轮机调节系统PID参数进行优化调节.仿真结果表明,在5%空载频率扰动下,改进PSOGSA的PID控制器明显优于上述传统算法,所调节的模型系统能在更短时间内趋于稳定,此时的超调量远低于传统算法,表明此改进PSOGSA在后续迭代中具备更高的迭代效率,并且改善了常规算法中易陷入局部最优的问题,从而证明了改进PSOGSA的合理有效性,水轮机调节系统的控制效果在一定程度上得到优化. 展开更多
关键词 水轮机调节系统 改进引力搜索算法 PID参数优化 粒子群算法
下载PDF
考虑碳排放的分布式电源优化配置 被引量:1
18
作者 杨胡萍 占建建 +2 位作者 曹正东 李向军 徐丕立 《南昌大学学报(理科版)》 CAS 2024年第1期87-94,共8页
对分布式电源接入配电网进行合理的优化配置,能在兼顾运营商和用户利益的同时,改善系统整体电压分布。建立了综合考虑分布式电源投资成本、用户购电成本、网损费用和碳排放费用的多目标优化模型。利用改进层次分析法确定各目标的权重,... 对分布式电源接入配电网进行合理的优化配置,能在兼顾运营商和用户利益的同时,改善系统整体电压分布。建立了综合考虑分布式电源投资成本、用户购电成本、网损费用和碳排放费用的多目标优化模型。利用改进层次分析法确定各目标的权重,进而转化为单目标函数规划问题。针对天牛须算法个体单一性在解决高维复杂问题时精度低,优化效果不佳的问题,提出了一种改进天牛须粒子群算法,利用混沌映射对参数进行调整,引入动态惯性权重、莱维飞行机制,提高了收敛速度。以IEEE33节点系统为例,将改进天牛须粒子群算法与粒子群算法及天牛须粒子群算法的效果对比,验证改进算法对分布式电源优化配置问题的可行性,有效降低了碳排放费用、用户购电费用,减少了系统网损,改善了系统整体电压分布。 展开更多
关键词 分布式电源 优化配置 多目标优化 改进层次分析法 改进天牛须粒子群算法
下载PDF
基于改进PSO算法的光伏阵列MPPT研究 被引量:1
19
作者 商立群 闵鹏波 张建涛 《传感器与微系统》 CSCD 北大核心 2024年第8期35-39,共5页
为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,... 为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,引入了Logistic-Tent混沌映射和TVCF,既可增强种群多样性,避免粒子早熟,跳出局部优化,又能加快粒子收敛,提升全局寻优能力。最后在MATLAB/Simu-link上进行仿真。仿真结果表明:相比于传统MPPT算法,LT-TVCFPSO算法能够快速准确地追踪到全局最大功率点(GMPP)。 展开更多
关键词 全局寻优 改进粒子群优化算法 双重混沌映射 时变双重压缩因子 全局最大功率点
下载PDF
分布式光伏配电网电压无功优化研究 被引量:1
20
作者 闫群民 李勇 +1 位作者 李宏刚 高梁 《陕西理工大学学报(自然科学版)》 2024年第2期31-37,85,共8页
为解决分布式光伏接入配电网引起的电压越限质量问题,建立以有功网损和电压偏差最小为目标的无功优化数学模型。通过对光伏并网点的电压进行分析,提出了一种加权方式的电压功率与静止无功发生器控制补偿相结合的协同控制策略。为提高模... 为解决分布式光伏接入配电网引起的电压越限质量问题,建立以有功网损和电压偏差最小为目标的无功优化数学模型。通过对光伏并网点的电压进行分析,提出了一种加权方式的电压功率与静止无功发生器控制补偿相结合的协同控制策略。为提高模型的求解能力,采用改进的粒子群优化算法,引入变异操作防止算法陷入局部最优;为提高算法的收敛效果,采用改进的异步学习因子。在IEEE-33节点配电系统中进行算例验证,结果表明了模型的正确性和策略的有效性。 展开更多
关键词 分布式光伏 无功优化 静止无功发生器 改进粒子群算法 变异操作
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部