Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the mos...Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.展开更多
A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Oc...A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Ocean Model System) coupled models combined with local observational information through dynamically downscaling coupled data assimilation(CDA).The system generates 18-day forecasts for the atmosphere and ocean environment on a daily quasi-operational schedule at Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM),consisting of 2 different-resolution coupled models:27 km WRF coupled with 9 km ROMS,9 km WRF coupled with 3 km ROMS,while a version of 3 km WRF coupled with 3 km ROMS is in a test mode.This study is a first step to evaluate the impact of high-resolution coupled model with dynamically downscaling CDA on the extended-range predictions,focusing on forecasts of typhoon onset,improved precipitation and typhoon intensity forecasts as well as simulation of the Kuroshio current variability associated with mesoscale oceanic activities.The results show that for realizing the extended-range predictability of atmospheric and oceanic environment characterized by statistics of mesoscale activities,a fine resolution coupled model resolving local mesoscale phenomena with balanced and coherent coupled initialization is a necessary first step.The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions to enable the model to resolve kilometer or sub-kilometer processes.展开更多
基金Key R&D Program of Xizang Autonomous Region(XZ202101ZY0004G)National Natural Science Foundation of China(U2142202)+1 种基金National Key R&D Program of China(2022YFC3004104)Key Innovation Team of China Meteor-ological Administration(CMA2022ZD07)。
文摘Short-duration heavy rainfall(SHR),as delineated by the National Meteorological Center of the China Me-teorological Administration,is characterized by hourly rainfall amounts no less than 20.0 mm.SHR is one of the most common convective weather phenomena that can cause severe damage.Short-range forecasting of SHR is an important part of operational severe weather prediction.In the present study,an improved objective SHR forecasting scheme was developed by adopting the ingredients-based methodology and using the fuzzy logic approach.The 1.0°×1.0°National Centers for Environmental Prediction(NCEP)final analysis data and the ordinary rainfall(0.1-19.9 mm h-1)and SHR observational data from 411 stations were used in the improved scheme.The best lifted index,the total precipitable water,the 925 hPa specific humidity(Q 925),and the 925 hPa divergence(DIV 925)were selected as predictors based on objective analysis.Continuously distributed membership functions of predictors were obtained based on relative frequency analysis.The weights of predictors were also objectively determined.Experiments with a typhoon SHR case and a spring SHR case show that the main possible areas could be captured by the improved scheme.Verification of SHR forecasts within 96 hours with NCEP global forecasts 1.0°×1.0°data initiated at 08:00 Beijing Time during the warm seasons in 2015 show the results were improved from both deterministic and probabilistic perspectives.This study provides an objectively feasible choice for short-range guidance forecasts of SHR.The scheme can be applied to other convective phenomena.
基金supported by the National Key Research and Development Program of China(2017YFC1404100,2017YFC1404104)the National Natural Science Foundation of China(41775100,41830964)+1 种基金the Shandong Province’s"Taishan"Scientist Project(2018012919)the collaborative project between the Ocean University of China(OUC),Texas A&M University(TAMU)and the National Center for Atmospheric Research(NCAR)and completed through the International Laboratory for High Resolution Earth System Prediction(iHESP)-a collaboration among QNLM,TAMU and NCAR。
文摘A regional coupled prediction system for the Asia-Pacific(AP-RCP)(38°E-180°,20°S-60°N) area has been established.The AP-RCP system consists of WRF-ROMS(Weather Research and Forecast,and Regional Ocean Model System) coupled models combined with local observational information through dynamically downscaling coupled data assimilation(CDA).The system generates 18-day forecasts for the atmosphere and ocean environment on a daily quasi-operational schedule at Pilot National Laboratory for Marine Science and Technology(Qingdao)(QNLM),consisting of 2 different-resolution coupled models:27 km WRF coupled with 9 km ROMS,9 km WRF coupled with 3 km ROMS,while a version of 3 km WRF coupled with 3 km ROMS is in a test mode.This study is a first step to evaluate the impact of high-resolution coupled model with dynamically downscaling CDA on the extended-range predictions,focusing on forecasts of typhoon onset,improved precipitation and typhoon intensity forecasts as well as simulation of the Kuroshio current variability associated with mesoscale oceanic activities.The results show that for realizing the extended-range predictability of atmospheric and oceanic environment characterized by statistics of mesoscale activities,a fine resolution coupled model resolving local mesoscale phenomena with balanced and coherent coupled initialization is a necessary first step.The next challenges include improving the planetary boundary physics and the representation of air-sea and air-land interactions to enable the model to resolve kilometer or sub-kilometer processes.