In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble...Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.展开更多
In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral c...In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral cells and elements are defined in parameter space,which can reproduce the geometry exactly at all the stages.In IIBNM,the improved interpolating moving leastsquare method(IIMLS)is applied for field approximation and the shape functions have the delta function property.The Lagrangian basis functions are used for field approximation in IBEM.Thus,the boundary conditions can be imposed directly in both methods.The shape functions are defined in 1D parameter space and no curve length needs to be computed.Besides,most methods for the treatment of the singular integrals in the boundary element method can be applied in IIBNM and IBEM directly.Numerical examples have demonstrated the accuracy of the proposed methods.展开更多
This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form s...This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy.展开更多
For the purpose of resolving the problem of performance deterioration introduced by inaccurate phase compensation in existing coherent averaging line spectrum detectors, a modified coherent detector is proposed. The t...For the purpose of resolving the problem of performance deterioration introduced by inaccurate phase compensation in existing coherent averaging line spectrum detectors, a modified coherent detector is proposed. The three point interpolation in frequency domain is applied to obtain accurate estimate of phase difference between segments when the segmented length is not an integral multiple of the signal period. Then the segmented data are multiplied by a complex coefficient to remove the phase difference and synchronize the phases of all the segments before coherent averaging. Theoretical analysis shows that there will be a gain of 3.9 dB at most by using the modified detector. The detection performance of the incoher- ent averaging power spectrum detector (AVGPR), the phase coherent averaging detector, the modified coherent averaging detector are compared with each other by computer simulations. The results coincide basically with the theoretical analysis, which show the superiority of the modified detector to the former two detectors.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.
基金The research for this paper was supported by(1)the National Natural Science Foundation of China(Grants Nos.51708429,51708428)the Open Projects Foundation(Grant No.2017-04-GF)of State Key Laboratory for Health and Safety of Bridge Structures+1 种基金Wuhan Institute of Technology Science Found(Grant No.K201734)the science and technology projects of Wuhan Urban and Rural Construction Bureau(Grants Nos.201831,201919).
文摘In this paper,general interpolating isogeometric boundary node method(IIBNM)and isogeometric boundary element method(IBEM)based on parameter space are proposed for 2D elasticity problems.In both methods,the integral cells and elements are defined in parameter space,which can reproduce the geometry exactly at all the stages.In IIBNM,the improved interpolating moving leastsquare method(IIMLS)is applied for field approximation and the shape functions have the delta function property.The Lagrangian basis functions are used for field approximation in IBEM.Thus,the boundary conditions can be imposed directly in both methods.The shape functions are defined in 1D parameter space and no curve length needs to be computed.Besides,most methods for the treatment of the singular integrals in the boundary element method can be applied in IIBNM and IBEM directly.Numerical examples have demonstrated the accuracy of the proposed methods.
基金supported by the National Natural Science Foundation of China (Grant No. 11571223)。
文摘This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy.
文摘For the purpose of resolving the problem of performance deterioration introduced by inaccurate phase compensation in existing coherent averaging line spectrum detectors, a modified coherent detector is proposed. The three point interpolation in frequency domain is applied to obtain accurate estimate of phase difference between segments when the segmented length is not an integral multiple of the signal period. Then the segmented data are multiplied by a complex coefficient to remove the phase difference and synchronize the phases of all the segments before coherent averaging. Theoretical analysis shows that there will be a gain of 3.9 dB at most by using the modified detector. The detection performance of the incoher- ent averaging power spectrum detector (AVGPR), the phase coherent averaging detector, the modified coherent averaging detector are compared with each other by computer simulations. The results coincide basically with the theoretical analysis, which show the superiority of the modified detector to the former two detectors.