Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
For the approximation in L_(p)-norm,we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots.For p=1,∞,we ...For the approximation in L_(p)-norm,we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots.For p=1,∞,we obtain its values.By these results we know that for the Sobolev classes,the approximation errors by piecewise cubic Hermite interpolation are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.At the same time,the approximation errors of derivatives are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.展开更多
针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平...针对局部均值分解(Local Mean Decomposition,LMD)算法应用于电能质量扰动检测时存在“端点效应”与滑动平均收敛速度慢,严重影响测量精度的问题,提出一种改进局部均值分解方法(Modified LMD,MLMD)。通过分段三次Hermite插值取代滑动平均法,有效改善LMD收敛慢、受平滑长度影响的弊端。为避免延拓长度不够而导致的“延拓失败”情形,在镜像延拓法的基础上结合“奇延拓”方法提出改进镜像延拓法。针对“直接法”求频率存在“毛刺现象”的弊端,文中改用希尔伯特变换(Hilbert Transform,HT)求取瞬时频率。最后,将MLMD分别应用于单一扰动信号与复合谐波信号的检测,相较传统的经验模态分解方法(Empirical Mode Decomposition,EMD),MLMD方法可有效抑制“端点效应”,同时能更准确的定位扰动信号的起止时刻,并且对高次谐波信号有更好的提取能力。展开更多
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金supported by the National Natural Science Foundations of China(Grant No.11271263).
文摘For the approximation in L_(p)-norm,we determine the weakly asymptotic orders for the simultaneous approximation errors of Sobolev classes by piecewise cubic Hermite interpolation with equidistant knots.For p=1,∞,we obtain its values.By these results we know that for the Sobolev classes,the approximation errors by piecewise cubic Hermite interpolation are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.At the same time,the approximation errors of derivatives are weakly equivalent to the corresponding infinite-dimensional Kolmogorov widths.