期刊文献+
共找到770篇文章
< 1 2 39 >
每页显示 20 50 100
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
1
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
2
作者 王奕涵 章海锋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期352-363,共12页
Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded p... Using an improved particle swarm optimization algorithm(IPSO)to drive a transfer matrix method,a nonreciprocal absorber with an ultrawide absorption bandwidth and angular insensitivity is realized in plasma-embedded photonic crystals arranged in a structure composed of periodic and quasi-periodic sequences on a normalized scale.The effective dielectric function,which determines the absorption of the plasma,is subject to the basic parameters of the plasma,causing the absorption of the proposed absorber to be easily modulated by these parameters.Compared with other quasi-periodic sequences,the Octonacci sequence is superior both in relative bandwidth and absolute bandwidth.Under further optimization using IPSO with 14 parameters set to be optimized,the absorption characteristics of the proposed structure with different numbers of layers of the smallest structure unit N are shown and discussed.IPSO is also used to address angular insensitive nonreciprocal ultrawide bandwidth absorption,and the optimized result shows excellent unidirectional absorbability and angular insensitivity of the proposed structure.The impacts of the sequence number of quasi-periodic sequence M and collision frequency of plasma1ν1 to absorption in the angle domain and frequency domain are investigated.Additionally,the impedance match theory and the interference field theory are introduced to express the findings of the algorithm. 展开更多
关键词 magnetized plasma photonic crystals improved particle swarm optimization algorithm nonreciprocal ultra-wide band absorption angular insensitivity
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
3
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
4
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 improved particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE Adaptive Strategy CHAOTIC SEQUENCE
下载PDF
Short-term Load Prediction of Integrated Energy System with Wavelet Neural Network Model Based on Improved Particle Swarm Optimization and Chaos Optimization Algorithm 被引量:15
5
作者 Leijiao Ge Yuanliang Li +2 位作者 Jun Yan Yuqian Wang Na Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第6期1490-1499,共10页
To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo... To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN. 展开更多
关键词 Integrated energy system(IES) load prediction chaos optimization algorithm(COA) improved particle swarm optimization(IPSO) Pearson correlation coefficient wavelet neural network(WNN)
原文传递
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
6
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
下载PDF
A novel mapping algorithm for three-dimensional network on chip based on quantum-behaved particle swarm optimization 被引量:2
7
作者 Cui HUANG Dakun ZHANG Guozhi SONG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第4期622-631,共10页
Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP ... Mapping of three-dimensional network on chip is a key problem in the research of three-dimensional network on chip. The quality of the mapping algorithm used di- rectly affects the communication efficiency between IP cores and plays an important role in the optimization of power consumption and throughput of the whole chip. In this paper, ba- sic concepts and related work of three-dimensional network on chip are introduced. Quantum-behaved particle swarm op- timization algorithm is applied to the mapping problem of three-dimensional network on chip for the first time. Sim- ulation results show that the mapping algorithm based on quantum-behaved particle swarm algorithm has faster con- vergence speed with much better optimization performance compared with the mapping algorithm based on particle swarm algorithm. It also can effectively reduce the power consumption of mapping of three-dimensional network on chip. 展开更多
关键词 three-dimensional network on chip mapping al-gorithm quantum-behaved particle swarm optimization al-gorithm particle swarm optimization algorithm low powerconsumption
原文传递
Research on the Optimization Approach for Cargo Oil Tank Design Based on the Improved Particle Swarm Optimization Algorithm 被引量:1
8
作者 姜文英 林焰 +1 位作者 陈明 于雁云 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第5期565-570,共6页
Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the car... Based on the improved particle swarm optimization(PSO) algorithm,an optimization approach for the cargo oil tank design(COTD) is presented in this paper.The purpose is to design an optimal overall dimension of the cargo oil tank(COT) under various kinds of constraints in the preliminary design stage.A non-linear programming model is built to simulate the optimization design,in which the requirements and rules for COTD are used as the constraints.Considering the distance between the inner shell and hull,a fuzzy constraint is used to express the feasibility degree of the double-hull configuration.In terms of the characteristic of COTD,the PSO algorithm is improved to solve this problem.A bivariate extremum strategy is presented to deal with the fuzzy constraint,by which the maximum and minimum cargo capacities are obtained simultaneously.Finally,the simulation demonstrates the feasibility and effectiveness of the proposed approach. 展开更多
关键词 cargo oil tank optimization design nonlinear programming improved particle swarm optimization(PSO)algorithm fuzzy constraint construction feasibility degree
原文传递
Optimal Planning of Charging Station for Electric Vehicle Based on Quantum PSO Algorithm 被引量:9
9
作者 LIU Zifa ZHANG Wei WANG Zeli 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0006-I0006,共1页
关键词 电动汽车 粒子群算法 充电站 规划 优化 量子 能源 EV
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
10
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
基于改进引力搜索算法的水轮机调节系统仿真 被引量:1
11
作者 潘虹 杭晨阳 郑源 《排灌机械工程学报》 CSCD 北大核心 2024年第1期8-13,共6页
针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新... 针对现阶段水电机组存在多种复杂工况、工程计算受限于算法本身的复杂性等问题,提出一种改进的引力搜索算法(改进PSOGSA),以此提高水轮机控制参数的优化性能,弥补传统控制策略难以满足动态需求的不足.首先,结合PSO算法,在GSA的速度更新公式中引入学习因子进行改进.其次,应用一种权重系数优化其位置更新公式,提高算法的自适应性.最后,结合相关仿真建模试验,使用所提改进PSOGSA对水轮机调节系统PID参数进行优化调节.仿真结果表明,在5%空载频率扰动下,改进PSOGSA的PID控制器明显优于上述传统算法,所调节的模型系统能在更短时间内趋于稳定,此时的超调量远低于传统算法,表明此改进PSOGSA在后续迭代中具备更高的迭代效率,并且改善了常规算法中易陷入局部最优的问题,从而证明了改进PSOGSA的合理有效性,水轮机调节系统的控制效果在一定程度上得到优化. 展开更多
关键词 水轮机调节系统 改进引力搜索算法 PID参数优化 粒子群算法
下载PDF
考虑碳排放的分布式电源优化配置 被引量:1
12
作者 杨胡萍 占建建 +2 位作者 曹正东 李向军 徐丕立 《南昌大学学报(理科版)》 CAS 2024年第1期87-94,共8页
对分布式电源接入配电网进行合理的优化配置,能在兼顾运营商和用户利益的同时,改善系统整体电压分布。建立了综合考虑分布式电源投资成本、用户购电成本、网损费用和碳排放费用的多目标优化模型。利用改进层次分析法确定各目标的权重,... 对分布式电源接入配电网进行合理的优化配置,能在兼顾运营商和用户利益的同时,改善系统整体电压分布。建立了综合考虑分布式电源投资成本、用户购电成本、网损费用和碳排放费用的多目标优化模型。利用改进层次分析法确定各目标的权重,进而转化为单目标函数规划问题。针对天牛须算法个体单一性在解决高维复杂问题时精度低,优化效果不佳的问题,提出了一种改进天牛须粒子群算法,利用混沌映射对参数进行调整,引入动态惯性权重、莱维飞行机制,提高了收敛速度。以IEEE33节点系统为例,将改进天牛须粒子群算法与粒子群算法及天牛须粒子群算法的效果对比,验证改进算法对分布式电源优化配置问题的可行性,有效降低了碳排放费用、用户购电费用,减少了系统网损,改善了系统整体电压分布。 展开更多
关键词 分布式电源 优化配置 多目标优化 改进层次分析法 改进天牛须粒子群算法
下载PDF
多场景下基于AHP-EWM的人体健康状态评估模型研究 被引量:1
13
作者 火久元 王虹阳 +1 位作者 巨涛 胡军 《计算机工程》 CAS CSCD 北大核心 2024年第7期372-380,共9页
为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评... 为解决人体健康评估方法个性化监测不足的问题以及在满足不同场景下健康状态精细化评估的需求,需要一种基于多场景的人体健康状态评估方法来实现长期自动化监测。提出一种基于层次分析法(AHP)和熵权法(EWM)组合的多场景人体健康状态评估模型。首先采集人体在运动、休息、工作/学习和娱乐等4种不同场景下的健康监测指标数据,构建相应的评估指标体系。然后分别根据评估指标计算出AHP和EWM权重,再采用量子粒子群优化(QPSO)算法对AHP和EWM中的主客观权重进行分配,以确保评价指标占比的客观性。最后通过模糊综合评价法对人体健康状态进行评估和量化,并利用实际监测数据对方法的可靠性和稳定性进行验证。实验结果表明,在4种场景下所提方法的综合得分分别为63.78、59.83、58.71和59.21,表明在不同场景下该模型都具有较好的准确性和稳定性。根据评估结果,对测试者的身体状态评价结果进行分析,并给出一些健康建议。所提模型可全面了解人体在不同场景下的健康状况,并为人们提供科学的健康指导,从而为健康管理和疾病预防提供科学依据。 展开更多
关键词 健康状态 多重场景 层次分析法 熵权法 量子粒子群优化算法 模糊综合评价法
下载PDF
基于改进PSO算法的光伏阵列MPPT研究 被引量:1
14
作者 商立群 闵鹏波 张建涛 《传感器与微系统》 CSCD 北大核心 2024年第8期35-39,共5页
为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,... 为解决传统粒子群优化(PSO)算法在寻优过程中出现粒子早熟、收敛速度慢、易陷入局部优化等问题,提出一种基于反向学习的Logistic-Tent双重混沌映射和时变双重压缩因子(TVCF)策略的改进粒子群优化(LT-TVCFPSO)算法,在传统PSO算法基础上,引入了Logistic-Tent混沌映射和TVCF,既可增强种群多样性,避免粒子早熟,跳出局部优化,又能加快粒子收敛,提升全局寻优能力。最后在MATLAB/Simu-link上进行仿真。仿真结果表明:相比于传统MPPT算法,LT-TVCFPSO算法能够快速准确地追踪到全局最大功率点(GMPP)。 展开更多
关键词 全局寻优 改进粒子群优化算法 双重混沌映射 时变双重压缩因子 全局最大功率点
下载PDF
分布式光伏配电网电压无功优化研究 被引量:1
15
作者 闫群民 李勇 +1 位作者 李宏刚 高梁 《陕西理工大学学报(自然科学版)》 2024年第2期31-37,85,共8页
为解决分布式光伏接入配电网引起的电压越限质量问题,建立以有功网损和电压偏差最小为目标的无功优化数学模型。通过对光伏并网点的电压进行分析,提出了一种加权方式的电压功率与静止无功发生器控制补偿相结合的协同控制策略。为提高模... 为解决分布式光伏接入配电网引起的电压越限质量问题,建立以有功网损和电压偏差最小为目标的无功优化数学模型。通过对光伏并网点的电压进行分析,提出了一种加权方式的电压功率与静止无功发生器控制补偿相结合的协同控制策略。为提高模型的求解能力,采用改进的粒子群优化算法,引入变异操作防止算法陷入局部最优;为提高算法的收敛效果,采用改进的异步学习因子。在IEEE-33节点配电系统中进行算例验证,结果表明了模型的正确性和策略的有效性。 展开更多
关键词 分布式光伏 无功优化 静止无功发生器 改进粒子群算法 变异操作
下载PDF
采用改进多目标粒子群算法的斜拉桥阻尼器参数优化
16
作者 许莉 李煜民 +3 位作者 丁自豪 刘耿耿 刘康 贾宏宇 《振动工程学报》 EI CSCD 北大核心 2024年第6期1006-1014,共9页
为克服大跨度斜拉桥黏滞阻尼器优化设计效率低、多个相互制约的减震控制目标的问题难以权衡,基于遗传算法的“变异”方法,提出了改进多目标粒子群算法来进行阻尼器参数优化设计。建立大跨度斜拉桥的有限元模型,开展了全桥地震响应分析,... 为克服大跨度斜拉桥黏滞阻尼器优化设计效率低、多个相互制约的减震控制目标的问题难以权衡,基于遗传算法的“变异”方法,提出了改进多目标粒子群算法来进行阻尼器参数优化设计。建立大跨度斜拉桥的有限元模型,开展了全桥地震响应分析,根据抗震需求在桥梁纵向设置黏滞阻尼器;分别建立了塔底弯矩、阻尼力和梁端位移的减震响应与阻尼器参数之间的响应面数学模型;以减震响应面模型为研究对象,通过该算法进行阻尼器参数全局自动寻优分析,确定了阻尼器的最优参数,并与采用参数敏感性分析方法确定的一组阻尼参数进行对比分析。研究结果表明:该优化方法具有计算精度好、优化效率高和更好地权衡多个相互制约的减震控制目标的优点;通过优化算法获得的阻尼器参数组合相比采用参数敏感性分析方法获得的阻尼参数组合的减震响应,塔底弯矩增大1.73%,阻尼力减小5.97%,梁端位移减小1.66%;在无需多次有限元试算的基础上确定了更高精度的阻尼器优化参数组合,在提高减震效果的同时大大提升了计算效率。 展开更多
关键词 桥梁工程 黏滞阻尼器 改进粒子群算法 斜拉桥 响应面法 多目标优化
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:1
17
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进K-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
电动汽车双层优化模型的充放电调度策略
18
作者 马永翔 王希鑫 +2 位作者 闫群民 孔志战 淡文国 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第2期267-276,共10页
传统的分时电价策略虽然一定程度上可以改善电动汽车无序充电所产生的电网日负荷峰谷差加大、负荷率降低等状况,但易产生新的负荷高峰,并且当前多目标优化等策略削峰填谷效果欠佳或用户参与度不高。针对上述问题,提出一种基于双层优化... 传统的分时电价策略虽然一定程度上可以改善电动汽车无序充电所产生的电网日负荷峰谷差加大、负荷率降低等状况,但易产生新的负荷高峰,并且当前多目标优化等策略削峰填谷效果欠佳或用户参与度不高。针对上述问题,提出一种基于双层优化模型的调度策略以充分考虑电网和用户两侧需求。第1层模型以优化电网日负荷方差最小为目标函数;第2层优化模型建立以车主充电成本最小以及保证用户出行需求的目标函数,然后用改进的粒子群-模拟退火算法对双层优化模型进行循环迭代求解,并将第2层优化后的结果反馈给第1层,以此循环优化,输出最终结果。对比优化前后的负荷曲线,结果表明:与当前优化策略相比,所提出的基于双层优化模型的V2G调度策略能有效降低新的负荷高峰及负荷峰谷差,减少参与V2G的用户成本,实现两侧双赢。 展开更多
关键词 电动汽车 V2G技术 充放电优化调度 双层优化模型 改进粒子群-模拟退火算法
下载PDF
采用改进BP-PID控制的机器人避障仿真研究
19
作者 吴静松 耿振铎 《中国工程机械学报》 北大核心 2024年第4期437-441,共5页
针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积... 针对移动机器人避障过程中行驶路径长、寻路速度慢等问题,提出了一种改进反向传播-比例-积分-微分(BP-PID)控制器,并对移动机器人避障效果进行仿真验证。利用移动机器人在二维坐标系的避障简图,得出了移动机器人运动方程式。引用比例-积分-微分(PID)控制器和3层BP神经网络结构,利用BP神经网络的学习能力调整PID控制器参数。引用粒子群算法进行改进,通过改进粒子群算法在线优化BP-PID控制器,确保移动机器人BP-PID控制器收敛于全局最优值,从而使移动机器人避障效果更好。在不同环境中,采用Matlab软件对移动机器人避障效果进行仿真,比较改进前和改进后的移动机器人避障效果。结果显示:在不同环境中,改进前和改进后的BP-PID控制器均能使移动机器人安全地躲避障碍物;但是采用改进的粒子群算法优化BP-PID控制器,可以使移动机器人运动路径更短,迭代次数更少,搜索时间更短。采用改进BP-PID控制器,能够提高移动机器人避障过程中寻路速度,缩短行驶路径,效果更好。 展开更多
关键词 移动机器人 BP神经网络 PID控制器 改进粒子群算法 避障 仿真
下载PDF
基于空海异构无人平台的水下目标搜索与跟踪
20
作者 丁文俊 柴亚军 +2 位作者 杨宇贤 刘佳敏 毛昭勇 《水下无人系统学报》 2024年第2期237-249,共13页
海上异构无人系统可有效提高复杂任务的完成效率。文中采用自主水下航行器(AUV)和无人机(UAV)来完成近海海域内未知水下目标的搜索与跟踪任务。首先,描述了水下目标搜索跟踪任务,将任务过程分为目标搜索和目标跟踪阶段,2个阶段的目标分... 海上异构无人系统可有效提高复杂任务的完成效率。文中采用自主水下航行器(AUV)和无人机(UAV)来完成近海海域内未知水下目标的搜索与跟踪任务。首先,描述了水下目标搜索跟踪任务,将任务过程分为目标搜索和目标跟踪阶段,2个阶段的目标分别是使AUV&UAV总搜索空间最大化以及AUV与水下目标的末端位置误差最小;然后,建立AUV&UAV跨域协同搜索模型,并设定模型中AUV和UAV探测范围和通信距离等约束条件;最后,在跨域协同搜索与路径跟踪规划中,基于传统粒子群算法,加入自适应学习因子调控策略和精英保存策略,生成搜索与跟踪路径。仿真实验表明,采用改进粒子群优化算法的AUV&UAV异构无人系统能够更高效地完成水下目标搜索与跟踪任务。 展开更多
关键词 跨域无人系统 自主水下航行器 无人机 改进粒子群优化算法
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部