期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An alternative 2D ICEEMDAN-based denoising method and its application in processing magnetic anomaly data
1
作者 Jun Xu Jinsong Du Changqing Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第5期465-476,共12页
Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mo... Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data. 展开更多
关键词 2D ICEEMDAN Mode mixing effect Magnetic anomaly DENOISING improved soft thresholding
下载PDF
Automated Extraction for Water Bodies Using New Water Index from Landsat 8 OLI Images 被引量:3
2
作者 Pu YAN Yue FANG +2 位作者 Jie CHEN Gang WANG Qingwei TANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第1期59-75,共17页
The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to... The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies. 展开更多
关键词 water bodies extraction Landsat 8 OLI images water index improved local adaptive threshold segmentation linear feature enhancement
下载PDF
Brain Tumor Classification Using Image Fusion and EFPA-SVM Classifier
3
作者 P.P.Fathimathul Rajeena R.Sivakumar 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2837-2855,共19页
An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques ha... An accurate and early diagnosis of brain tumors based on medical ima-ging modalities is of great interest because brain tumors are a harmful threat to a person’s health worldwide.Several medical imaging techniques have been used to analyze brain tumors,including computed tomography(CT)and magnetic reso-nance imaging(MRI).CT provides information about dense tissues,whereas MRI gives information about soft tissues.However,the fusion of CT and MRI images has little effect on enhancing the accuracy of the diagnosis of brain tumors.Therefore,machine learning methods have been adopted to diagnose brain tumors in recent years.This paper intends to develop a novel scheme to detect and classify brain tumors based on fused CT and MRI images.The pro-posed approach starts with preprocessing the images to reduce the noise.Then,fusion rules are applied to get the fused image,and a segmentation algorithm is employed to isolate the tumor region from the background to isolate the tumor region.Finally,a machine learning classifier classified the brain images into benign and malignant tumors.Computing statistical measures evaluate the classi-fication potential of the proposed scheme.Experimental outcomes are provided,and the Enhanced Flower Pollination Algorithm(EFPA)system shows that it out-performs other brain tumor classification methods considered for comparison. 展开更多
关键词 Brain tumor classification improved wavelet threshold integer wavelet transform medical image fusion
下载PDF
Fusion Fault Diagnosis Approach to Rolling Bearing with Vibrational and Acoustic Emission Signals 被引量:1
4
作者 Junyu Chen Yunwen Feng +1 位作者 Cheng Lu Chengwei Fei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期1013-1027,共15页
As the key component in aeroengine rotor systems,the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems.In order to monitor rolling bearing conditions,a fusion... As the key component in aeroengine rotor systems,the health status of rolling bearings directly influences the reliability and safety of aeroengine rotor systems.In order to monitor rolling bearing conditions,a fusion fault diagnosis method,namely empirical mode decomposition(EMD)-Mahalanobis distance(E2MD)and improved wavelet threshold(IWT)(E2MD-IWT)for vibrational signals and acoustic emission(AE)signals is developed to improve the diagnostic accuracy of rolling bearings.The IWT method is proposed with a hard wavelet threshold and a soft wavelet threshold.Moreover,it is shown to be effective through numerical simulation.EMD is utilized to process the original AE signals for rolling bearings so as to generate a set of components called intrinsic modes functions(IMFs).The Mahalanobis distance(MD)approach is introduced in order to determine the smallest MD between the original AE signal and IMF components.Then,the IWT approach is employed to select the IMF components with the largest MD.It is demonstrated that the proposed E2MD-IWT method for vibrational and AE signals can improve rolling bearing fault diagnosis,beyond its ability to effectively eliminate noise signals.This study offers a promising approach to fault diagnosis for rolling bearings in aeroengines with regard to vibration signals and AE signals. 展开更多
关键词 Empirical mode decomposition mahalanobis distance improved wavelet threshold rolling bearings
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部