期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Single-Channel Speech Enhancement Based on Improved Frame-Iterative Spectral Subtraction in the Modulation Domain 被引量:1
1
作者 Chao Li Ting Jiang Sheng Wu 《China Communications》 SCIE CSCD 2021年第9期100-115,共16页
Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.Howeve... Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB). 展开更多
关键词 short-time modulation domain single-channel speech enhancement modulation improved frame iterative spectral subtraction low SNRs
下载PDF
Sika Deer Behavior Recognition Based on Machine Vision
2
作者 He Gong Mingwang Deng +6 位作者 Shijun Li Tianli Hu Yu Sun Ye Mu Zilian Wang Chang Zhang Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2022年第12期4953-4969,共17页
With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for ... With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for the behaviour recognition of sika deer is proposed in this paper.Google Inception Net(GoogLeNet)is used to optimise the model in this paper.First,the number of layers and size of the model were reduced.Then,the 5×5 convolution was changed to two 3×3 convolutions,which reduced the parameters and increased the nonlinearity of the model.A 5×5 convolution kernel was used to replace the original convolution for extracting coarse-grained features and improving the model’s extraction ability.A multi-scale module was added to the model to enhance the multi-faceted feature extraction capability of the model.Simultaneously,the Squeeze-and-Excitation Networks(SE-Net)module was included to increase the channel’s attention and improve the model’s accuracy.The dataset’s images were rotated to reduce overfitting.For image rotation,the angle wasmultiplied by 30°to obtain the dataset enhanced by rotation operations of 30°,60°,90°,120°and 150°.The experimental results showed that the recognition rate of this model in the behaviour of sika deer was 98.92%.Therefore,the model presented in this paper can be applied to the behaviour recognition of sika deer.The results will play an essential role in promoting animal behaviour recognition technology and animal health monitoring management. 展开更多
关键词 Behaviour recognition SE-Net module multi-scale module improved Inception module
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部