This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi...A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over th...COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over the world.The healthcare sector of the world is facing great challenges tackling COVID cases.One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases.In this article,we propose a deep Convo-lutional Neural Network(CNN)based approach to detect COVID+(i.e.,patients with COVID-19),pneumonia and normal cases,from the chest X-ray images.COVID-19 detection from chest X-ray is suitable considering all aspects in compar-ison to Reverse Transcription Polymerase Chain Reaction(RT-PCR)and Computed Tomography(CT)scan.Several deep CNN models including VGG16,InceptionV3,DenseNet121,DenseNet201 and InceptionResNetV2 have been adopted in this pro-posed work.They have been trained individually to make particular predictions.Empirical results demonstrate that DenseNet201 provides overall better performance with accuracy,recall,F1-score and precision of 94.75%,96%,95%and 95%respec-tively.After careful comparison with results available in the literature,we have found to develop models with a higher reliability.All the studies were carried out using a publicly available chest X-ray(CXR)image data-set.展开更多
A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, ro...A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, roadhead ers are m echanical m iners w h ich have b een extensively u se d in tu n n elin g , m ining an d civil indu stries. Perform ance pred ictio n is an im p o rta n t issue for successful ro a d h e a d e r application andgenerally deals w ith m achine selection, p ro d u ctio n rate an d b it consu m p tio n . The m ain aim o f thisresearch is to investigate th e c u ttin g p erfo rm an ce (in stan tan eo u s c u ttin g rates (ICRs)) o f m ed iu m -d u tyro ad h ead ers by using artificial neural n etw o rk (ANN) approach. T here are d ifferent categories forANNs, b u t based o n train in g alg o rith m th e re are tw o m ain k in d s: supervised and u n su p erv ised . Them u lti-lay er p ercep tro n (MLP) an d K ohonen self-organizing feature m ap (KSOFM) are th e m o st w idelyused neu ral netw o rk s for supervised an d u n su p erv ised ones, respectively. For gaining this goal, ad atab ase w as prim arily provided from ro ad h e a d e rs' p erfo rm an ce an d geom echanical characteristics o frock form ations in tu n n els and d rift galleries in Tabas coal m ine, th e larg est an d th e only fullymech an ized coal m ine in Iran. T hen th e datab ase w as analyzed in o rd e r to yield th e m ost im p o rtan tfactor for ICR by using relatively im p o rta n t factor in w hich G arson eq u atio n w as utilized. The MLPn etw o rk w as train ed by 3 in p u t p ara m e te rs including rock m ass pro p erties, rock quality d esignation(RQD), in tact rock p ro p erties such as uniaxial com pressive stre n g th (UCS) an d Brazilian ten sile stren g th(BTS), and o n e o u tp u t p a ra m e te r (ICR). In o rd e r to have m ore v alidation o n MLP o u tp u ts, KSOFM visualizationw as applied. The m ean square e rro r (MSE) an d regression coefficient (R ) o f MLP w e re found tobe 5.49 an d 0.97, respectively. M oreover, KSOFM n etw o rk has a m ap size o f 8 x 5 and final qu an tizatio nan d topographic erro rs w e re 0.383 an d 0.032, respectively. The results show th a t MLP neural n etw orkshave a strong capability to p red ict an d ev alu ate th e perfo rm an ce o f m ed iu m -d u ty ro ad h ead ers in coalm easu re rocks. Furtherm ore, it is concluded th a t KSOFM neural n etw o rk is an efficient w ay for u n d e rstand in g system beh av io r an d know ledge extraction. Finally, it is indicated th a t UCS has m ore influenceo n ICR b y applying th e b e st train ed MLP n etw o rk w eig h ts in G arson eq u atio n w h ich is also confirm ed byKSOFM.展开更多
An artificial neural network is used to predict the performance of fabrics in clothing manufacturing. The predictions are based on fabric mechanical properties measured on the FAST system. The influences of the differ...An artificial neural network is used to predict the performance of fabrics in clothing manufacturing. The predictions are based on fabric mechanical properties measured on the FAST system. The influences of the different ANNs construct on the convergence speed and the prediction accuracy are investigated. The result indicates that the BP neural network is an efficiency technique and has a wide prospect in the application to garment processing.展开更多
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ...In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.展开更多
Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The t...Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates.展开更多
Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smo...Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.展开更多
The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of ...The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of instances of clients simultaneously requesting the same Web page that contains the same SQL queries, the number of tables queried by the SQL, the number of records to be displayed on the requested Web pages, and the type of used database server. This work demonstrates the influences of these parameters on the results of Web server performance analyzes. For the MySQL database server, it has been observed that the mean response time of the Web server tends to become increasingly slow as the number of client connection occurrences as well as the number of records to display increases. For the PostgreSQL database server, the mean response time of the Web server does not change much, although there is an increase in the number of clients and/or size of information to be displayed on Web pages. Although it has been observed that the mean response time of the Web server is generally a little faster for the MySQL database server, it has been noted that this mean response time of the Web server is more stable for PostgreSQL database server.展开更多
This paper motivated and inspired by an interdisciplinary critical educational issue adopted for a research work approach. It concerned with application of realistic Artificial Neural Networks (ANNs) models integratin...This paper motivated and inspired by an interdisciplinary critical educational issue adopted for a research work approach. It concerned with application of realistic Artificial Neural Networks (ANNs) models integrating reading brain function with multi-sensory cognitive learning theory. Specifically, these models adopted to improve tutoring quality (academic achievement) while teaching children “how to read?” considering the analysis and evaluation of phonics methodology. Herein, quantitative analysis and evaluation of this issue performed by considering two computer aided learning (CAL) packages concerned with a specific selected mathematical topic namely: long division process. Via realistic modeling of packages using (ANNs) based upon associative memory learning paradigm. In more details, at educational field practice; both CAL packages have been applied for teaching children algorithmic steps performing long division processes. Moreover, learning performance evaluation of presented packages considers children outcomes’ achievement after tutoring for suggested Mathematical Topic either with or without associated tutor’s voice. Interestingly, statistical analysis of obtained educational case study results at children classrooms (for both applied packages) versus classical tutoring proved to be in well agreement with obtained after ANNs computer simulation results.展开更多
This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,f...This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.展开更多
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the...In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.展开更多
On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the est...On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.展开更多
In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effectiv...In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.展开更多
In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based ...In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based on adaptive particle swarm optimization( PSO) algorithm. This algorithm adjusted the inertia weight coefficients and learning factors adaptively and therefore could be used to optimize the weights in the BP network. After establishing the improved PSO-BP( IPSO-BP) model,it was applied to solve fault diagnosis of rolling bearing. Wavelet denoising was selected to reduce the noise of the original vibration signals,and based on these vibration signals a wide set of features were used as the inputs in the neural network models. We demonstrate the effectiveness of the proposed approach by comparing with the traditional BP,PSO-BP and linear PSO-BP( LPSO-BP) algorithms. The experimental results show that IPSO-BP network outperforms other algorithms with faster convergence speed,lower errors,higher diagnostic accuracy and learning ability.展开更多
Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable predic...Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC.This study presents the application of artificial neural networks(ANNs) for a priori prediction of the effectiveness of RDC.The models are trained with in situ dynamic cone penetration(DCP) test data obtained from previous civil projects associated with the 4-sided impact roller.The predictions from the ANN models are in good agreement with the measured field data,as indicated by the model correlation coefficient of approximately 0.8.It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.展开更多
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr...Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
文摘COVID-19 has created a panic all around the globe.It is a contagious dis-ease caused by Severe Acute Respiratory Syndrome Coronavirus 2(SARS-CoV-2),originated from Wuhan in December 2019 and spread quickly all over the world.The healthcare sector of the world is facing great challenges tackling COVID cases.One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases.In this article,we propose a deep Convo-lutional Neural Network(CNN)based approach to detect COVID+(i.e.,patients with COVID-19),pneumonia and normal cases,from the chest X-ray images.COVID-19 detection from chest X-ray is suitable considering all aspects in compar-ison to Reverse Transcription Polymerase Chain Reaction(RT-PCR)and Computed Tomography(CT)scan.Several deep CNN models including VGG16,InceptionV3,DenseNet121,DenseNet201 and InceptionResNetV2 have been adopted in this pro-posed work.They have been trained individually to make particular predictions.Empirical results demonstrate that DenseNet201 provides overall better performance with accuracy,recall,F1-score and precision of 94.75%,96%,95%and 95%respec-tively.After careful comparison with results available in the literature,we have found to develop models with a higher reliability.All the studies were carried out using a publicly available chest X-ray(CXR)image data-set.
文摘A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, roadhead ers are m echanical m iners w h ich have b een extensively u se d in tu n n elin g , m ining an d civil indu stries. Perform ance pred ictio n is an im p o rta n t issue for successful ro a d h e a d e r application andgenerally deals w ith m achine selection, p ro d u ctio n rate an d b it consu m p tio n . The m ain aim o f thisresearch is to investigate th e c u ttin g p erfo rm an ce (in stan tan eo u s c u ttin g rates (ICRs)) o f m ed iu m -d u tyro ad h ead ers by using artificial neural n etw o rk (ANN) approach. T here are d ifferent categories forANNs, b u t based o n train in g alg o rith m th e re are tw o m ain k in d s: supervised and u n su p erv ised . Them u lti-lay er p ercep tro n (MLP) an d K ohonen self-organizing feature m ap (KSOFM) are th e m o st w idelyused neu ral netw o rk s for supervised an d u n su p erv ised ones, respectively. For gaining this goal, ad atab ase w as prim arily provided from ro ad h e a d e rs' p erfo rm an ce an d geom echanical characteristics o frock form ations in tu n n els and d rift galleries in Tabas coal m ine, th e larg est an d th e only fullymech an ized coal m ine in Iran. T hen th e datab ase w as analyzed in o rd e r to yield th e m ost im p o rtan tfactor for ICR by using relatively im p o rta n t factor in w hich G arson eq u atio n w as utilized. The MLPn etw o rk w as train ed by 3 in p u t p ara m e te rs including rock m ass pro p erties, rock quality d esignation(RQD), in tact rock p ro p erties such as uniaxial com pressive stre n g th (UCS) an d Brazilian ten sile stren g th(BTS), and o n e o u tp u t p a ra m e te r (ICR). In o rd e r to have m ore v alidation o n MLP o u tp u ts, KSOFM visualizationw as applied. The m ean square e rro r (MSE) an d regression coefficient (R ) o f MLP w e re found tobe 5.49 an d 0.97, respectively. M oreover, KSOFM n etw o rk has a m ap size o f 8 x 5 and final qu an tizatio nan d topographic erro rs w e re 0.383 an d 0.032, respectively. The results show th a t MLP neural n etw orkshave a strong capability to p red ict an d ev alu ate th e perfo rm an ce o f m ed iu m -d u ty ro ad h ead ers in coalm easu re rocks. Furtherm ore, it is concluded th a t KSOFM neural n etw o rk is an efficient w ay for u n d e rstand in g system beh av io r an d know ledge extraction. Finally, it is indicated th a t UCS has m ore influenceo n ICR b y applying th e b e st train ed MLP n etw o rk w eig h ts in G arson eq u atio n w h ich is also confirm ed byKSOFM.
文摘An artificial neural network is used to predict the performance of fabrics in clothing manufacturing. The predictions are based on fabric mechanical properties measured on the FAST system. The influences of the different ANNs construct on the convergence speed and the prediction accuracy are investigated. The result indicates that the BP neural network is an efficiency technique and has a wide prospect in the application to garment processing.
文摘In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.
文摘Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates.
基金This work was supported by the National Natural Science Foundation of China(No.60274009)and Specialized Research Fundfor the Doctoral Program of Higher Education(No.20020145007).
文摘Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach.
文摘The purpose of this study is to analyze and then model, using neural network models, the performance of the Web server in order to improve them. In our experiments, the parameters taken into account are the number of instances of clients simultaneously requesting the same Web page that contains the same SQL queries, the number of tables queried by the SQL, the number of records to be displayed on the requested Web pages, and the type of used database server. This work demonstrates the influences of these parameters on the results of Web server performance analyzes. For the MySQL database server, it has been observed that the mean response time of the Web server tends to become increasingly slow as the number of client connection occurrences as well as the number of records to display increases. For the PostgreSQL database server, the mean response time of the Web server does not change much, although there is an increase in the number of clients and/or size of information to be displayed on Web pages. Although it has been observed that the mean response time of the Web server is generally a little faster for the MySQL database server, it has been noted that this mean response time of the Web server is more stable for PostgreSQL database server.
文摘This paper motivated and inspired by an interdisciplinary critical educational issue adopted for a research work approach. It concerned with application of realistic Artificial Neural Networks (ANNs) models integrating reading brain function with multi-sensory cognitive learning theory. Specifically, these models adopted to improve tutoring quality (academic achievement) while teaching children “how to read?” considering the analysis and evaluation of phonics methodology. Herein, quantitative analysis and evaluation of this issue performed by considering two computer aided learning (CAL) packages concerned with a specific selected mathematical topic namely: long division process. Via realistic modeling of packages using (ANNs) based upon associative memory learning paradigm. In more details, at educational field practice; both CAL packages have been applied for teaching children algorithmic steps performing long division processes. Moreover, learning performance evaluation of presented packages considers children outcomes’ achievement after tutoring for suggested Mathematical Topic either with or without associated tutor’s voice. Interestingly, statistical analysis of obtained educational case study results at children classrooms (for both applied packages) versus classical tutoring proved to be in well agreement with obtained after ANNs computer simulation results.
文摘This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning.
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFA0706200).
文摘In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.
基金supported in part by the National Natural Science Foundation of China under Grants 62103352supported in part by Hebei Natural Science Foundation,China under Grant F2023203056the 8th batch of post-doctoral Innovative Talent Support Program BX20230150.
文摘On state estimation problems of switched neural networks,most existing results with an event-triggered scheme(ETS)not only ignore the estimator information,but also just employ a fixed triggering threshold,and the estimation error cannot be guaranteed to converge to zero.In addition,the state estimator of non-switched neural networks with integral and exponentially convergent terms cannot be used to improve the estimation performance of switched neural networks due to the difficulties caused by the nonsmoothness of the considered Lyapunov function at the switching instants.In this paper,we aim at overcoming such difficulties and filling in the gaps,by proposing a novel adaptive ETS(AETS)to design an event-based H_(∞)switched proportional-integral(PI)state estimator.A triggering-dependent exponential convergence term and an integral term are introduced into the switched PI state estimator.The relationship among the average dwell time,the AETS and the PI state estimator are established by the triggering-dependent exponential convergence term such that estimation error asymptotically converges to zero with H_(∞)performance level.It is shown that the convergence rate of the resultant error system can be adaptively adjusted according to triggering signals.Finally,the validity of the proposed theoretical results is verified through two illustrative examples.
基金supported in part by the Institute of Information and Communications Technology Planning and Evaluation(IITP)Grant by the Korean Government Ministry of Science and ICT(MSITArtificial Intelligence Innovation Hub)under Grant 2021-0-02068in part by the NationalResearch Foundation of Korea(NRF)Grant by theKorean Government(MSIT)under Grant NRF-2021R1I1A3060565.
文摘In the quest to minimize energy waste,the energy performance of buildings(EPB)has been a focus because building appliances,such as heating,ventilation,and air conditioning,consume the highest energy.Therefore,effective design and planning for estimating heating load(HL)and cooling load(CL)for energy saving have become paramount.In this vein,efforts have been made to predict the HL and CL using a univariate approach.However,this approach necessitates two models for learning HL and CL,requiring more computational time.Moreover,the one-dimensional(1D)convolutional neural network(CNN)has gained popularity due to its nominal computa-tional complexity,high performance,and low-cost hardware requirement.In this paper,we formulate the prediction as a multivariate regression problem in which the HL and CL are simultaneously predicted using the 1D CNN.Considering the building shape characteristics,one kernel size is adopted to create the receptive fields of the 1D CNN to extract the feature maps,a dense layer to interpret the maps,and an output layer with two neurons to predict the two real-valued responses,HL and CL.As the 1D data are not affected by excessive parameters,the pooling layer is not applied in this implementation.Besides,the use of pooling has been questioned by recent studies.The performance of the proposed model displays a comparative advantage over existing models in terms of the mean squared error(MSE).Thus,the proposed model is effective for EPB prediction because it reduces computational time and significantly lowers the MSE.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61174115 and 51104044)
文摘In order to overcome shortcomings of traditional BP neural network,such as low study efficiency, slow convergence speed,easily trapped into local optimal solution,we proposed an improved BP neural network model based on adaptive particle swarm optimization( PSO) algorithm. This algorithm adjusted the inertia weight coefficients and learning factors adaptively and therefore could be used to optimize the weights in the BP network. After establishing the improved PSO-BP( IPSO-BP) model,it was applied to solve fault diagnosis of rolling bearing. Wavelet denoising was selected to reduce the noise of the original vibration signals,and based on these vibration signals a wide set of features were used as the inputs in the neural network models. We demonstrate the effectiveness of the proposed approach by comparing with the traditional BP,PSO-BP and linear PSO-BP( LPSO-BP) algorithms. The experimental results show that IPSO-BP network outperforms other algorithms with faster convergence speed,lower errors,higher diagnostic accuracy and learning ability.
基金supported under Australian Research Council's Discovery Projects funding scheme(project No.DP120101761)
文摘Rolling dynamic compaction(RDC),which involves the towing of a noncircular module,is now widespread and accepted among many other soil compaction methods.However,to date,there is no accurate method for reliable prediction of the densification of soil and the extent of ground improvement by means of RDC.This study presents the application of artificial neural networks(ANNs) for a priori prediction of the effectiveness of RDC.The models are trained with in situ dynamic cone penetration(DCP) test data obtained from previous civil projects associated with the 4-sided impact roller.The predictions from the ANN models are in good agreement with the measured field data,as indicated by the model correlation coefficient of approximately 0.8.It is concluded that the ANN models developed in this study can be successfully employed to provide more accurate prediction of the performance of the RDC on a range of soil types.
基金Project(2012T50331)supported by China Postdoctoral Science FoundationProject(2008AA092301-2)supported by the High-Tech Research and Development Program of China
文摘Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.