[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM...[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.展开更多
Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil ...Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.展开更多
The establishment of a unified land use classification system is the basis for realizing the unified management of land and sea,urban and rural areas,and aboveground and underground space.In November 2020,the Ministry...The establishment of a unified land use classification system is the basis for realizing the unified management of land and sea,urban and rural areas,and aboveground and underground space.In November 2020,the Ministry of Natural Resources of the People's Republic of China issued the Classification Guide for Land and Space Survey,Planning and Use Control of Land and Sea(for Trial Implementation),which aims to establish a national unified land and sea use classification system,lay an important foundation for scientific planning and unified management of natural resources,rational use and protection of natural resources,and speed up the construction of a new pattern of land and space development and protection.However,there are still some obvious shortcomings in the Classification Guide.This paper analyzes some problems existing in this classification standard from three aspects of logicality,rigorousness and comprehensiveness,and puts forward some suggestions for further improvement.This has important practical significance to better guiding the practice of land use and land resources management,and then to achieving the goal of unified management of natural resources.展开更多
In order to explore the effect of Fenlong cultivation in rebuilding and uti- lization of saline-alkali land, the Fenlong tillage machine and Fenlong technology were invented and put into tests in the saline-alkali lan...In order to explore the effect of Fenlong cultivation in rebuilding and uti- lization of saline-alkali land, the Fenlong tillage machine and Fenlong technology were invented and put into tests in the saline-alkali land from 2015-2016 in Xinjiang Autonomous Region and Shaanxi province, respectively. The results showed that in Xinjiang, the total salt content in the heavy saline-alkali soil decreased by 31.31% after one season of cotton planting using Fenlong, while cotton yield increased by 48.80%, and the soil salinity level was fallen from "severe" to "moderate" level. In Shaanxi, the total salt content in decreased by 42.73% after planting summer corn summer corn the mild saline-alkali land using Fenlong cultivation, while the corn yield increased by 34.83%, and the soil salinity degree was changed from "mild de- salination" to "normal farmland". At last, the paper provided the mechanism and reasons for desalination in soil and yield increase by Fenlong cultivation.展开更多
Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Pro...Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.展开更多
Tanghai County is one of the counties in Tangshan City with the highest saline-alkali degree, with 80% of its land being covered by saline-alkali soils. Through studying landscaping technologies for coastal saline-alk...Tanghai County is one of the counties in Tangshan City with the highest saline-alkali degree, with 80% of its land being covered by saline-alkali soils. Through studying landscaping technologies for coastal saline-alkali land in Tanghai County, 3 dominant modes for landscaping engineering in such land were summarized as shallow underground pipe desalination technology, banding soil replacement technology and hole membrane soil replacement technology, which are different in application scope and also in cost (respectively 260, 210 and 170 yuan). 3 landscaping measures were also proposed, including promotion of suitable plant cultivation technologies, application of saline-alkali tolerant plants and biological improvement of soils. To explore economic and practical planting patterns for saline-alkali land, low-cost landscaping tests were conducted from the perspectives of improving landscaping engineering mode and optimizing landscaping measures, and the results showed that it was practical to apply low-cost landscaping patterns, and comprehensive ecological measures should be adopted to realize the sustained utilization of soil.展开更多
As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one...As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one of main distribution regions of saline-alkali land in China,with great potential in agricultural development. In this study,the extent,transformation,spatial distribution and temporal change of saline-alkali land in the western Songnen Plain during 1954–2005 were investigated by using remote sensing and GIS spatial analysis methods. Saline-alkali land change was detected from a temporal series of topographic maps in 1954,satellite images of Landsat MSS in 1976,Landsat TM/ETM in 1988,2000 and 2005 through artificial visual interpretation. The results indicated a significant expansion in saline-alkali land area and aggravation in salinization. The area of saline-alkali land had increased from 401.48×103 ha in 1954 to 1 097.45×103 ha in 2005. While the ratio of light,moderate and serious salinized land areas changed from 6.72︰2.92︰1.00 to 1.25︰1.06︰1.00 in the study period. Grassland,cropland,swampland and water body were the major land use and land cover types from which saline-alkali land transformed. And the secondary salinization occured mainly in Da′an City,Tongyu County,Changling County,Daqing City,Dorbod Mongolian Autonomous County and Zhaoyuan County. Finally,seven large ecoregions and 14 corresponding sub-ecoregions were delineated out based on spatio-temopral dynamic characteristics of saline-alkali land and geo-relational environmental attributes. According to the results,measures of amelioration and ways of development of saline-alkali land in the western Songnen Plain were put forward.展开更多
Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux ...Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.展开更多
Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2...Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed.展开更多
Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present ...Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present situation of saline-alkali land is monitored by remote sensing image processing. Causes for land salinization are analyzed, especially the two key factors, ground water depth and its mineralization degree, are analyzed by using long-term observation data. Previously, zonation of saline-alkali soil was made descriptively and artificially. Based on the present situation of saline-alkali land, ground water depth and ground water mineralization degree, the zonation of saline-alkali land for amelioration in the Yellow River Delta was completed quantitatively. Four different types of saline-alkali land amelioration zones are delineated, namely, easy ameliorated zone, relatively difficult ameliorated zone, difficult ameliorated zone and unfavorable ameliorated zone. Countermeasures for ameliorating saline-alkali soils are put forward according to ecological conditions of different saline-alkali land zones.展开更多
Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to ...Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession.展开更多
Based on Tupu theory, this paper studied the dynamic changes, conversion modes, expansion intensity and landscape attributes of the saline-alkali lands in Changling County, Zhenlai County and Da'an City of the wes...Based on Tupu theory, this paper studied the dynamic changes, conversion modes, expansion intensity and landscape attributes of the saline-alkali lands in Changling County, Zhenlai County and Da'an City of the western Jilin Province in 1980-2000 with the help of GIS. The results show that the saline-alkali land rather sharply increased in Da'an during 1995-2000; the main conversion processes in the three counties were from grassland to saline-alkali land and from saline-alkali land to grassland; and the typical shapes, spatial expansion speed and mode, and landscape attributes of the saline-alkali land were different in the three counties, which were closely related to local topography, predominant wind orientation, water resources distribution, etc. The corresponding spatial expansion mode was marginality in Changling, random in Zhenlai and more kernels in Da'an, respectively. Landscape attributes also responded to the spatial-temporal dynamic changes of the saline-alkali land and the landscape indices of Da'an fluctuated greatly. The frame of this research may provide fundamental reference for landscape analysis and give some suggestions for regional sustainable development.展开更多
In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization ...In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic ...Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.展开更多
Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and sc...Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions,roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland.The soil properties and AM fungal colonization were measured,and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target,subsequently,maize was selected as the host to verify its colonization.The results showed that the soil properties improved with the succession of saline-alkali grassland.The plants’communities of the three stages could be colonized by AM fungi,and the colonization rate of Leymus chinensis(the third stage)ranged from 66.67%to 100%,Puccinellia tenuiflora(the second stage)ranged from 50%to 80%,while the Suaeda glauca(the first stage)was only 35%–60%.Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency,relative abundance,and importance value of 100%,18.1%,and 59.1%,respectively.The colonization rate of Glomeraceae sp1 in maize ranged from 80%to 87%and similar mycorrhizal characteristics were detected in the roots of P.tenuiflora,S.glauca,and L.chinensis,indicating that Glomeraceae sp1 colonized the samples in the field.The correlation matrix indicated that colonization rate,colonization intensity,and vesicle abundance were closely related to soil conditions most,and they were related significantly to all the soil properties except cellulase activity.Besides,redundancy analysis(RDA)showed that soil properties drove the changes of AM fungal colonization and sporulation.These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions,and also for the exploration of AM fungi species with great functions.展开更多
Taking 14 prefecture-level cities in Guangxi as an object,this paper explored the difference of cultivated land utilization efficiency in Guangxi,comprehensively evaluated the economic,social,and ecological aspects,an...Taking 14 prefecture-level cities in Guangxi as an object,this paper explored the difference of cultivated land utilization efficiency in Guangxi,comprehensively evaluated the economic,social,and ecological aspects,and analyzed the regional differences in cultivated land use efficiency in Guangxi from 2005 to 2018 based on the improved TOPSIS method.By studying the quantitative change trends and spatial differences of the utilization benefit of cultivated land resources in Guangxi,it came up with recommendations for optimizing the allocation of cultivated land from the quantity and quality of cultivated land.It is intended to provide a scientific and theoretical reference for improving the use efficiency of cultivated land in Guangxi.展开更多
[Objective] The paper aimed at researching on the ecological remediation materials and related technologies in degraded land.[Method] Pointing at the specific reasons for degradation of soil moisture and fertility con...[Objective] The paper aimed at researching on the ecological remediation materials and related technologies in degraded land.[Method] Pointing at the specific reasons for degradation of soil moisture and fertility conditions,the ecological remediation materials and related technologies for soil moisture had been studied using layered silicates as substrate materials and using straw turnover as the method.The application research had been carried out in degraded cultivated land,compacted land,saline-alkali soil and laboratory of nine provinces and regions on 26 species and 48 varieties.[Result] The materials and related technologies are environment-friendly in formula,processing,application with no hidden trouble as secondary pollution,which can be used for the restoration of positive balance of soil moisture conditions(water,fertilizer,gas,and heat),establishment of the core of a stable circle and improving food production steadily.The materials are more suitable for plant growth than chemical fertilizers,applying of which helps plants obtain better adversity resistance.[Conclusion] The ecological remediation materials for soil moisture can reduce the application of chemical fertilizers effectively and improve the production and quality of crops remarkably.展开更多
Quality is the core feature of cultivated land. In the face of deteriorating cultivated land quality and growing food demand, improving cultivated land quality is a top priority for guaranteeing the sustainable use of...Quality is the core feature of cultivated land. In the face of deteriorating cultivated land quality and growing food demand, improving cultivated land quality is a top priority for guaranteeing the sustainable use of resources and national food security. Cultivated land quality in the new era can be considered in four dimensions: suitability, contiguity, resistance and ecological stress. Cultivated land suitability in China shows a decreasing trend from east to west, cultivated land contiguity is high in the north-east and low in the south-west. In terms of cultivated land resistance, the number of strongly and weakly resistant cropping fields is small and spatially clustered. Cultivated land with ecological stress is mainly located in the northern region. Based on the current situation of cultivated land quality and the strategic needs of national high-quality development, China's future goals for improving cultivated land quality include four aspects: promoting the sustainable use of resources,improving the economic benefits of farming, coping with extreme meteorological disasters and meeting the transition of the food system.Against the backdrop of a volatile international environment and high domestic demand for food, China should guarantee a safe supply of staples, a stable supply of animal feed and a moderate supply of high-nutrient food. In the future, China should create three major food production spaces: highstandard, low-to medium-yield, and marginal cultivated land. China urgently needs to construct three paths to implement the goal of improving cultivated land quality, namely the development of high-standard cultivated land with the core of spatial optimization, resilience enhancement and scale coupling,the transformation of low-to medium-yield cultivated land with the core of obstacle elimination, tenure adjustment, ecological sustainable, and the conservation development of marginal cultivated land with a focus on sustainable use.展开更多
As one of the Special Economic Zones since the reform and opening up, Zhuhai has developed during the past 30 years. Its economic development, industrial structure and ecological environment have undergone great chang...As one of the Special Economic Zones since the reform and opening up, Zhuhai has developed during the past 30 years. Its economic development, industrial structure and ecological environment have undergone great changes. Research on changes in Zhuhai’s land ecological security is of great significance. Using relevant data from 2007-2012, this study established a land ecological security assessment system based on the PSR conceptual framework model. The system contained 18 indicators from 3 aspects according to the concrete features of Zhuhai. Then we used the matterelement analysis and the improved entropy weight to analyze and evaluate the land ecological security of Zhuhai. The results showed that: from 2007 to 2012, the levels of the land ecological security of Zhuhai were “secure”, and the value increased year by year;as the land ecological security response value increased, Zhuhai was capable of solving land ecosystem problems. However, it should be noted that the structure of land ecosystem in Zhuhai has not formed and that rapid expansion of construction land has caused the shortage of cultivated land and other issues. Measures should be taken to control the construction area, improve land intensive utilization and improve the land ecological security.展开更多
基金Supported by Key Research and Development Program of Hebei Province(20322911D,21322903D)Innovation Ability Promotion Program of Hebei Province(20562903D)+1 种基金Technical Innovation Guidance Program of Hebei Province(20822904D)Science and Technology Research and Development Program of Qinhuangdao City(202201B028).
文摘[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.
基金Supported by the Key Research and Development Program for Industrial Keytechnologies of Shandong Province(2016CYJS05A01-2)the Key Research and Development Program for Public Welfare of Shandong Province(2018GNC111001)the Special Fund for the Construction of Oversea Taishan Scholars
文摘Field experiment carried out to test the effects of soil improver on wheat yield and soil physical-chemical properties. The results indicated that soil improver could optimize soil aggregates structure, decrease soil bulk density, soil pH and soil salt content, increase soil organic matter and 1 000-grain weight, thereby enhancing wheat yield. With the increase of soil improver application amount, soil physical-chemical properties became better and wheat yield increased. However, there was no significant difference in the treatments with the application amounts of 3%, 4% and 5%. In addition, the treatment of reducing nitrogen showed no superiority in soil physical-chemical properties and wheat yield, indicating that sufficient nitrogen was essential for the growth of wheat.
文摘The establishment of a unified land use classification system is the basis for realizing the unified management of land and sea,urban and rural areas,and aboveground and underground space.In November 2020,the Ministry of Natural Resources of the People's Republic of China issued the Classification Guide for Land and Space Survey,Planning and Use Control of Land and Sea(for Trial Implementation),which aims to establish a national unified land and sea use classification system,lay an important foundation for scientific planning and unified management of natural resources,rational use and protection of natural resources,and speed up the construction of a new pattern of land and space development and protection.However,there are still some obvious shortcomings in the Classification Guide.This paper analyzes some problems existing in this classification standard from three aspects of logicality,rigorousness and comprehensiveness,and puts forward some suggestions for further improvement.This has important practical significance to better guiding the practice of land use and land resources management,and then to achieving the goal of unified management of natural resources.
文摘In order to explore the effect of Fenlong cultivation in rebuilding and uti- lization of saline-alkali land, the Fenlong tillage machine and Fenlong technology were invented and put into tests in the saline-alkali land from 2015-2016 in Xinjiang Autonomous Region and Shaanxi province, respectively. The results showed that in Xinjiang, the total salt content in the heavy saline-alkali soil decreased by 31.31% after one season of cotton planting using Fenlong, while cotton yield increased by 48.80%, and the soil salinity level was fallen from "severe" to "moderate" level. In Shaanxi, the total salt content in decreased by 42.73% after planting summer corn summer corn the mild saline-alkali land using Fenlong cultivation, while the corn yield increased by 34.83%, and the soil salinity degree was changed from "mild de- salination" to "normal farmland". At last, the paper provided the mechanism and reasons for desalination in soil and yield increase by Fenlong cultivation.
基金Supported by Multi-goal Geochemical Survey in Laoling-Hekou Regions,Shandong Province of National Soil Survey and Pollution Prevention(GZTR20060104)~~
文摘Based on the geochemical data obtained from the national project about the prevention and control of soil contamination, this paper explored the properties of soil chemical elements in Huanghuaihai Plain, Shandong Province. The results showed that among the grade-one nutritive elements in soil, organic matter, nitrogen and phosphorus were relatively deficient while potassium was rich. Meanwhile, as the grade-two nutritive elements, calcium oxide and magnesium oxide were relatively short and sulfur’s content was abundant. About the other beneficial and trace nutri-tive elements, iron oxide, manganese, molybdenum and boron were deficient, but the content of chlorine was high, hardly lack. The main barriers to improving land productivity were soil salinization and soil heavy metal contamination. The values of soil integrated fertility index that most of the soil in the study area is middle-lower fertilized. Specifical y, the low fertility area and lower fertility area are 6 1604 and 1 244 km2 respectively, occupying about 97.43% and 1.97% of the total area. The moderate fertility soil has an area of 172 km2, occupying about 0.27% of the total area. The higher fertility soil covers an area of 128 km2, while the high fertility area of only 76 km2. This article proposed scientific fertilization, elimination of soil obsta-cle, remediation of heavy-metal-contaminated soil and other effective measures to improve land productivity according to the basic investigation results, which provides a good technological support for the planning and development of good-quality and high-benefit agriculture.
文摘Tanghai County is one of the counties in Tangshan City with the highest saline-alkali degree, with 80% of its land being covered by saline-alkali soils. Through studying landscaping technologies for coastal saline-alkali land in Tanghai County, 3 dominant modes for landscaping engineering in such land were summarized as shallow underground pipe desalination technology, banding soil replacement technology and hole membrane soil replacement technology, which are different in application scope and also in cost (respectively 260, 210 and 170 yuan). 3 landscaping measures were also proposed, including promotion of suitable plant cultivation technologies, application of saline-alkali tolerant plants and biological improvement of soils. To explore economic and practical planting patterns for saline-alkali land, low-cost landscaping tests were conducted from the perspectives of improving landscaping engineering mode and optimizing landscaping measures, and the results showed that it was practical to apply low-cost landscaping patterns, and comprehensive ecological measures should be adopted to realize the sustained utilization of soil.
基金Under the auspices of National Natural Science Foundation of China (No. 40771162)Key Item of Knowledge Innova-tion Programs of Chinese Academy of Sciences (No.KZCX2-SW-320-1)
文摘As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one of main distribution regions of saline-alkali land in China,with great potential in agricultural development. In this study,the extent,transformation,spatial distribution and temporal change of saline-alkali land in the western Songnen Plain during 1954–2005 were investigated by using remote sensing and GIS spatial analysis methods. Saline-alkali land change was detected from a temporal series of topographic maps in 1954,satellite images of Landsat MSS in 1976,Landsat TM/ETM in 1988,2000 and 2005 through artificial visual interpretation. The results indicated a significant expansion in saline-alkali land area and aggravation in salinization. The area of saline-alkali land had increased from 401.48×103 ha in 1954 to 1 097.45×103 ha in 2005. While the ratio of light,moderate and serious salinized land areas changed from 6.72︰2.92︰1.00 to 1.25︰1.06︰1.00 in the study period. Grassland,cropland,swampland and water body were the major land use and land cover types from which saline-alkali land transformed. And the secondary salinization occured mainly in Da′an City,Tongyu County,Changling County,Daqing City,Dorbod Mongolian Autonomous County and Zhaoyuan County. Finally,seven large ecoregions and 14 corresponding sub-ecoregions were delineated out based on spatio-temopral dynamic characteristics of saline-alkali land and geo-relational environmental attributes. According to the results,measures of amelioration and ways of development of saline-alkali land in the western Songnen Plain were put forward.
基金Under the auspices of National Key Technology R&D Program of China (No. 2007BAC29B01)Major State Basic Research Development Program of China (973 Program) (No. 2006CB400500)+1 种基金National Natural Science Foundation of China (No.40575047, 40705036, 40975055)Key Program of Jilin Provincial Science & Technology Department (No. 20020417)
文摘Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.
基金Supported by National Science and Technology Support Program(2014BAD06B05)
文摘Using smashing ridging tillage machine and smashing ridging technology invented by the authors, transformation test of saline-alkali land by smashing ridging was conducted respectively in Xinjiang and Shaanxi during 2015 -2016. The results showed, in severe saline-alkali soil of Xin-jiang ,after growing cotton by smashing ridging, total salt in soil decreased by 31.31 %, cotton production increased by 48.80%, and salinity level declined from severe to moderate; in mild saline-alkali soil of Shaanxi, after growing summer corn by smashing ridging, total salt in soil decreased by 42.37%, corn yield increased by 34.83%, salinity degree changed from mild desalination to normal farmland ; in Ningxia, Inner Mongolia 7 Gansu ,Jilin, Henan, Hebei, and so on, smashing ridging tillage practice in different types of saline-alkali land was conducted ; according to the salt reduction and yield increase effects of saline-alkali land after smashing ridging, the development prospect of smashing ridging technique in improvement and application of saline-alkali land was proposed.
基金Study of Sustainable Development Information Tupu in the Yellow River Delta Knowledge Innovation Project of CAS, No.CXIOG-D00-0
文摘Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present situation of saline-alkali land is monitored by remote sensing image processing. Causes for land salinization are analyzed, especially the two key factors, ground water depth and its mineralization degree, are analyzed by using long-term observation data. Previously, zonation of saline-alkali soil was made descriptively and artificially. Based on the present situation of saline-alkali land, ground water depth and ground water mineralization degree, the zonation of saline-alkali land for amelioration in the Yellow River Delta was completed quantitatively. Four different types of saline-alkali land amelioration zones are delineated, namely, easy ameliorated zone, relatively difficult ameliorated zone, difficult ameliorated zone and unfavorable ameliorated zone. Countermeasures for ameliorating saline-alkali soils are put forward according to ecological conditions of different saline-alkali land zones.
基金This work was supported by the National Natural Science Foundation of China(31601986)Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession.
基金Under the auspices of National Natural Science Foundation of China (No. 40401003)Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-356)fund for Scholarship of Dean of Chinese Academy of Sciences
文摘Based on Tupu theory, this paper studied the dynamic changes, conversion modes, expansion intensity and landscape attributes of the saline-alkali lands in Changling County, Zhenlai County and Da'an City of the western Jilin Province in 1980-2000 with the help of GIS. The results show that the saline-alkali land rather sharply increased in Da'an during 1995-2000; the main conversion processes in the three counties were from grassland to saline-alkali land and from saline-alkali land to grassland; and the typical shapes, spatial expansion speed and mode, and landscape attributes of the saline-alkali land were different in the three counties, which were closely related to local topography, predominant wind orientation, water resources distribution, etc. The corresponding spatial expansion mode was marginality in Changling, random in Zhenlai and more kernels in Da'an, respectively. Landscape attributes also responded to the spatial-temporal dynamic changes of the saline-alkali land and the landscape indices of Da'an fluctuated greatly. The frame of this research may provide fundamental reference for landscape analysis and give some suggestions for regional sustainable development.
基金the R&D project, titled " Creating a Marine Clay Matrix with Incineration Bottom Ash (IBA) for Land Reclamation " (Wu et al., 2014), under the Innovation for Environmental Sustainability (IES) Fund from National Environment Agency (NEA) of Singapore (ETO/CF/3/1)
文摘In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Supported by projects of the National Key Research and Developm ent China(No.2016YFC0501201-04)Strategic Planning of Ins titute of Northeast Geography and Agroecology,CAS(No.Y6H2091001).
文摘Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.
基金funded by National Natural Science Foundation of China with the Grant No.31601986Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions,roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland.The soil properties and AM fungal colonization were measured,and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target,subsequently,maize was selected as the host to verify its colonization.The results showed that the soil properties improved with the succession of saline-alkali grassland.The plants’communities of the three stages could be colonized by AM fungi,and the colonization rate of Leymus chinensis(the third stage)ranged from 66.67%to 100%,Puccinellia tenuiflora(the second stage)ranged from 50%to 80%,while the Suaeda glauca(the first stage)was only 35%–60%.Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency,relative abundance,and importance value of 100%,18.1%,and 59.1%,respectively.The colonization rate of Glomeraceae sp1 in maize ranged from 80%to 87%and similar mycorrhizal characteristics were detected in the roots of P.tenuiflora,S.glauca,and L.chinensis,indicating that Glomeraceae sp1 colonized the samples in the field.The correlation matrix indicated that colonization rate,colonization intensity,and vesicle abundance were closely related to soil conditions most,and they were related significantly to all the soil properties except cellulase activity.Besides,redundancy analysis(RDA)showed that soil properties drove the changes of AM fungal colonization and sporulation.These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions,and also for the exploration of AM fungi species with great functions.
基金Youth Program of Humanities and Social Science Project of the Ministry of Education(17YJC79004)Program of National Natural Science Foundation of China(71803104)Qingchuang Science and Technology Support Plan for Colleges and Universities in Shandong Province(2019RWE009).
文摘Taking 14 prefecture-level cities in Guangxi as an object,this paper explored the difference of cultivated land utilization efficiency in Guangxi,comprehensively evaluated the economic,social,and ecological aspects,and analyzed the regional differences in cultivated land use efficiency in Guangxi from 2005 to 2018 based on the improved TOPSIS method.By studying the quantitative change trends and spatial differences of the utilization benefit of cultivated land resources in Guangxi,it came up with recommendations for optimizing the allocation of cultivated land from the quantity and quality of cultivated land.It is intended to provide a scientific and theoretical reference for improving the use efficiency of cultivated land in Guangxi.
基金Supported by Support Forestry Science and Technology Project of State Forestry Administration(2006BAD261003-3)Natural Science Foundation of Science & Technology Ministry of China(50872085)Project of Beijing Agricultural Technology Extension Station(20100203)~~
文摘[Objective] The paper aimed at researching on the ecological remediation materials and related technologies in degraded land.[Method] Pointing at the specific reasons for degradation of soil moisture and fertility conditions,the ecological remediation materials and related technologies for soil moisture had been studied using layered silicates as substrate materials and using straw turnover as the method.The application research had been carried out in degraded cultivated land,compacted land,saline-alkali soil and laboratory of nine provinces and regions on 26 species and 48 varieties.[Result] The materials and related technologies are environment-friendly in formula,processing,application with no hidden trouble as secondary pollution,which can be used for the restoration of positive balance of soil moisture conditions(water,fertilizer,gas,and heat),establishment of the core of a stable circle and improving food production steadily.The materials are more suitable for plant growth than chemical fertilizers,applying of which helps plants obtain better adversity resistance.[Conclusion] The ecological remediation materials for soil moisture can reduce the application of chemical fertilizers effectively and improve the production and quality of crops remarkably.
基金supported by Major Program of the National Social Science Foundation of China (19ZDA096)National Natural Science Foundation of China (42171289)。
文摘Quality is the core feature of cultivated land. In the face of deteriorating cultivated land quality and growing food demand, improving cultivated land quality is a top priority for guaranteeing the sustainable use of resources and national food security. Cultivated land quality in the new era can be considered in four dimensions: suitability, contiguity, resistance and ecological stress. Cultivated land suitability in China shows a decreasing trend from east to west, cultivated land contiguity is high in the north-east and low in the south-west. In terms of cultivated land resistance, the number of strongly and weakly resistant cropping fields is small and spatially clustered. Cultivated land with ecological stress is mainly located in the northern region. Based on the current situation of cultivated land quality and the strategic needs of national high-quality development, China's future goals for improving cultivated land quality include four aspects: promoting the sustainable use of resources,improving the economic benefits of farming, coping with extreme meteorological disasters and meeting the transition of the food system.Against the backdrop of a volatile international environment and high domestic demand for food, China should guarantee a safe supply of staples, a stable supply of animal feed and a moderate supply of high-nutrient food. In the future, China should create three major food production spaces: highstandard, low-to medium-yield, and marginal cultivated land. China urgently needs to construct three paths to implement the goal of improving cultivated land quality, namely the development of high-standard cultivated land with the core of spatial optimization, resilience enhancement and scale coupling,the transformation of low-to medium-yield cultivated land with the core of obstacle elimination, tenure adjustment, ecological sustainable, and the conservation development of marginal cultivated land with a focus on sustainable use.
文摘As one of the Special Economic Zones since the reform and opening up, Zhuhai has developed during the past 30 years. Its economic development, industrial structure and ecological environment have undergone great changes. Research on changes in Zhuhai’s land ecological security is of great significance. Using relevant data from 2007-2012, this study established a land ecological security assessment system based on the PSR conceptual framework model. The system contained 18 indicators from 3 aspects according to the concrete features of Zhuhai. Then we used the matterelement analysis and the improved entropy weight to analyze and evaluate the land ecological security of Zhuhai. The results showed that: from 2007 to 2012, the levels of the land ecological security of Zhuhai were “secure”, and the value increased year by year;as the land ecological security response value increased, Zhuhai was capable of solving land ecosystem problems. However, it should be noted that the structure of land ecosystem in Zhuhai has not formed and that rapid expansion of construction land has caused the shortage of cultivated land and other issues. Measures should be taken to control the construction area, improve land intensive utilization and improve the land ecological security.