Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
No consensus has been reached in the academic community regarding the principles and criteria for the application of substantive consolidation in bankruptcy.However,in judicial practices,the substantive consolidation ...No consensus has been reached in the academic community regarding the principles and criteria for the application of substantive consolidation in bankruptcy.However,in judicial practices,the substantive consolidation doctrine has been applied to handle enterprise bankruptcy cases.This paper summarizes the dilemmas in the judicial application of substantive consolidation in bankruptcy through case analyses.The paper also proposes pathways for improving the judicial application criteria for the substantive consolidation in bankruptcy of affiliated enterprises in China,that is,comprehensively assessing the degree of corporate personality confusion from multiple perspectives;considering the cost and difficulty of asset segregation as supplementary elements;weighing the protection of creditors’interests;and taking into account the feasibility and necessity of consolidation and reorganization.展开更多
Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,envir...Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.展开更多
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st...Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.展开更多
Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction ...Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.展开更多
Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites sta...Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.展开更多
Nucleic acid analysis is a key technique that enables accurate detection of various microorganisms.Conventional nucleic acid testing typically requires access to specialized laboratories,equipment,and trained personne...Nucleic acid analysis is a key technique that enables accurate detection of various microorganisms.Conventional nucleic acid testing typically requires access to specialized laboratories,equipment,and trained personnel,which hinders the widespread use of on-site testing for DNA and RNA targets.However,integrating gene editing technology with traditional nucleic acid detection methods,especially isothermal amplification technology,can help overcome the limitations associated with on-site testing.This combination can accomplish precise and swift detection of nucleic acid sequences,offering a robust tool for on-site detection.The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins(CRISPR/Cas)technology,which comprises the CRISPR system and Cas effector proteins,is a powerful tool that is advancing the field of nucleic acid detection.Specifically,Cas12,Cas13,and Cas14 proteins have emerged as straightforward,effective,precise,sensitive,and cost-effective methods for in vitro nucleic acid detection because of their“collateral cleavage”characteristics.When combined with the“collateral cleavage”ability of Cas protein and isothermal amplification,CRISPR/Cas systems have great potential to advance nucleic acid detection.This article summarizes the research progress of different CRISPR/Cas systems and their applications in nucleic acid detection and future perspectives.展开更多
Implantable temperature sensors are revolutionizing physiological monitoring and playing a crucial role in diagnostics,therapeutics,and life sciences research.This review classifies the materials used in these sensors...Implantable temperature sensors are revolutionizing physiological monitoring and playing a crucial role in diagnostics,therapeutics,and life sciences research.This review classifies the materials used in these sensors into three categories:metal-based,inorganic semiconductor,and organic semiconductor materials.Metal-based materials are widely used in medical and industrial applications due to their linearity,stability,and reliability.Inorganic semiconductors provide rapid response times and high miniaturization potential,making them promising for biomedical and environmental monitoring.Organic semiconductors offer high sensitivity and ease of processing,enabling the development of flexible and stretchable sensors.This review analyzes recent studies for each material type,covering design principles,performance characteristics,and applications,highlighting key advantages and challenges regarding miniaturization,sensitivity,response time,and biocompatibility.Furthermore,critical performance parameters of implantable temperature sensors based on different material types are summarized,providing valuable references for future sensor design and optimization.The future development of implantable temperature sensors is discussed,focusing on improving biocompatibility,long-term stability,and multifunctional integration.These advancements are expected to expand the application potential of implantable sensors in telemedicine and dynamic physiological monitoring.展开更多
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s...To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.展开更多
In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strate...In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.展开更多
The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field e...The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.展开更多
Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality o...Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality of hand hygiene and hospitalization.Follow-up monitoring and real-time recording during the period of morning shift and medical operation concentration time,and compare the compliance of hand hygiene before and after implementation,and evaluate the quality of nosocomial infection.Results:The hand hygiene compliance of doctors and nurses in stage P was 82%.The compliance of medical staff in stage D was 93%.The compliance of stage C was 94%and that of stage A was 95%.The quality score of hospital self-examination nosocomial infection was also significantly increased.Conclusions:The PDCA management cycle can effectively improve the compliance of hand hygiene and the nosocomial infection quality,which is wor thy of circulatory application in or thopedic nosocomial infection quality control,especially improving the quality of hand hygiene.展开更多
Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy fo...Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination.展开更多
For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmissi...For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.展开更多
Background: Spasm is one of the most serious physical impairment after stroke. the external-application herbs have showed some effects on the spasm. This study was conducted to evaluate the comparative effectiveness o...Background: Spasm is one of the most serious physical impairment after stroke. the external-application herbs have showed some effects on the spasm. This study was conducted to evaluate the comparative effectiveness of the external-application herbs and physical therapy in upper limb spasticity after stroke. Methods: A total of 100 patients with upper limb spasm after stroke (stroke time less than 1 month), have been recruited in Shun-yi Hospital of Beijing Traditional Chinese Medicine Hospital. Patients will be randomly allotted to one of two groups (N = 50, respectively): the TCM external application group, and the usual rehab (conventional physical therapy and medication treatment) group. The two groups will be administered once a month for three months. The primary outcome will be Modified Athworth Scale (MAS) and the simplified scale (Fugl-Meyer assessment, FMA) for upper limb. Results: Muscle tension and motor function were evaluated before and 4 weeks after treatments. There was a significant improvement in muscle tension and motor function in patients with stroke after the external-application herbs and physical therapy (P < 0.05). Conclusion: There was a significant improvement in kinematics in patients with stroke.展开更多
The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase...The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage.Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage.In this paper,based on the strain-softening model,the stress and permeability model of the coal seam around the enlarged borehole was built,and based on the dual-medium model,the gas migration model in the coal seam was established.Then the borehole enlargement gas drainage engineering of E9/10 coal seam in Pingdingshan No.8 coal mine was simulated by using COMSOL Multiphysics software.The distribution of stress and permeability in the coal seam around a borehole was analyzed,and the reasonable borehole radius of 0.25 m and reasonable borehole spacing of 6 m were determined.Finally,in Pingdingshan No.8 coal mine,field application was carried out in E9/10 coal seam-21070 working face from the high-level gas drainage roadway.The results show that the actual average coal slag discharge rate is 77.82%,which achieved borehole enlargement.The natural gas flow rate from an enlarged borehole is 2.3–7.3 times that of a normal borehole,and the influence range of enlarged boreholes is more than 6 m.The average gas drainage concentration of a group of enlarged boreholes is about 42%,and the average gas drainage amount is about 0.53 m3/min.After two months of gas extraction,the outburst risk in this area was eliminated,which provides a guarantee for safe coal mining.展开更多
Amino acid transporters( AATs) play an important role in transport process of various amino acids,which are indispensable in plant growth and development,while many putative AATs have been identified and the complete ...Amino acid transporters( AATs) play an important role in transport process of various amino acids,which are indispensable in plant growth and development,while many putative AATs have been identified and the complete genomic sequences of the important plants have already been completed by splicing and assembling. There is still little knowledge about the expression,regulation and various biological functions of AATs in plants,including the major food crops. This study mainly reviewed the expression,regulation and various biological functions of AATs in plants,and the application of AATs in crop genetic improvement was also prospected. Thus,this review will provide important information for genetic improvement of staple food crops in plants.展开更多
The development of buffalo milk industry in China encounters the problems of small high yield populations and insufficient excellent provenance. There- fore, it is necessary to carry out dairy herd improvement (DHI)...The development of buffalo milk industry in China encounters the problems of small high yield populations and insufficient excellent provenance. There- fore, it is necessary to carry out dairy herd improvement (DHI) to increase dairy buffalo herd productivity. This paper reviewed the situation and problems of DHI in dairy buffalo, and the corresponding opinions and suggestions were put forward.展开更多
In this paper, we conduct research on the pushover methodology and the applications on the bridge seismic performance improvement scenarios. Bridge is an important part of the traffic lifeline engineering, and after t...In this paper, we conduct research on the pushover methodology and the applications on the bridge seismic performance improvement scenarios. Bridge is an important part of the traffic lifeline engineering, and after the earthquake, if the bridge damage, that will hinder the timely disaster relief operations, increase secondary disasters, not only cause the direct or indirect losses of people' s life and property, also affect the post-disaster recovery and reconstruction. Therefore, seismic design of the bridges has been people' s attention. From the earthquake when the bridge failure mechanism and the failure process point of view, to adjust the overall layout design of bridge structure, fundamentally improve the structural seismic performance as a whole. Our research proposes the novel paradigm for the corresponding challenges that will be meaningful.展开更多
Targeted genome engineering refers to technologies that are used for site-specific genome modifications such as knockout, knockin and transcriptional regulation of genes of interest in organisms. Site-specific recombi...Targeted genome engineering refers to technologies that are used for site-specific genome modifications such as knockout, knockin and transcriptional regulation of genes of interest in organisms. Site-specific recombination system, zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9) technologies are the representatives of targeted genome engineering and have been widely used in crop basic and applied research. In this review, we introduce the basic information and action modes of these different genome engineering technologies, summarize the recent progresses of targeted genome engineering technologies and their applications in crop improvement, and propose perspectives for genome engineering-mediated modifications of crop plants in the future.展开更多
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
文摘No consensus has been reached in the academic community regarding the principles and criteria for the application of substantive consolidation in bankruptcy.However,in judicial practices,the substantive consolidation doctrine has been applied to handle enterprise bankruptcy cases.This paper summarizes the dilemmas in the judicial application of substantive consolidation in bankruptcy through case analyses.The paper also proposes pathways for improving the judicial application criteria for the substantive consolidation in bankruptcy of affiliated enterprises in China,that is,comprehensively assessing the degree of corporate personality confusion from multiple perspectives;considering the cost and difficulty of asset segregation as supplementary elements;weighing the protection of creditors’interests;and taking into account the feasibility and necessity of consolidation and reorganization.
基金supported by the National Natural Science Foundation of China(No.51574105)the Science and Technology Program of Hebei Province,China(No.23564101D)+2 种基金the Natural Science Foundation of Hebei Province,China(No.E2021209147)the Key Research Project of North China University of Science and Technology(No.ZD-ST-202308)the Postgraduate Innovation Funding Project of Hebei Province,China(No.CXZZBS2024135).
文摘Calcium ferrite(CF)is recognized as a potential green and efficient functional material because of its advantages of magnetism,electrochemistry,catalysis,and biocompatibility in the fields of materials chemistry,environmental engineering,and biomedicine.There-fore,the obtained research results need to be systematically summarized,and new perspectives on CF and its composite materials need to be analyzed.Based on the presented studies of CF and its composite materials,the types and structures of the crystal are summarized.In addition,the current application technologies and theoretical mechanisms with various properties in different fields are elucidated.Moreover,the various preparation methods of CF and its composite materials are elaborated in detail.Most importantly,the advantages and disadvantages of the synthesis methods of CF and its composite materials are discussed,and the existing problems and emerging challenges in practical production are identified.Furthermore,the key future research directions of CF and its composite materials have been prospected from the potential application technologies to provide references for its synthesis and efficient utilization.
文摘Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.
基金supported by grants from the National Key Research&Development Plan(Grants Nos.2022YFF10030022022YFD1200502)+8 种基金National Natural Science Foundation of China(Grant Nos.3237269631991182)Wuhan Biological Breeding Major Project(Grant No.2022021302024852)Key Project of Hubei Hongshan Laboratory(2021hszd007)HZAU-AGIS Cooperation Fund(Grant No.SZYJY2023022)Funds for High Quality Development of Hubei Seed Industry(HBZY2023B004)Hubei Agriculture Research System(2023HBSTX4-06)Hubei Key Research&Development Plan(Grants Nos.2022BBA00662022BBA0062)。
文摘Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.
基金supported by the grants from the National Key Research and Development Program of China 2023YFC2505900support from State Key Laboratory of Photovoltaic Science and Technology 202401030303.
文摘Flexible photodetectors have garnered significant attention by virtue of their potential applications in environmental monitoring,wearable healthcare,imaging sensing,and portable optical communications.Perovskites stand out as particularly promising materials for photodetectors,offering exceptional optoelectronic properties,tunable band gaps,low-temperature solution processing,and notable mechanical flexibility.In this review,we explore the latest progress in flexible perovskite photodetectors,emphasizing the strategies developed for photoactive materials and device structures to enhance optoelectronic performance and stability.Additionally,we discuss typical applications of these devices and offer insights into future directions and potential applications.
基金supported by the Natural Science Foundation of Hunan Province(Grant Nos.2021JJ30050 and 2023JJ50368)Science and Technology Program of Hunan Province(Grant No.2021SK50313)+3 种基金the Research Project of Hunan Provincial Health Commission(Grant Nos.202203102912 and 202203103105,W20243264)the Science and Technology Program of Chenzhou(Grant No.ZDYF2020011)the Key Project of the First People’s Hospital of Chenzhou(Grant No.CZYY202203)the Innovative Team Project of the First People’s Hospital of Chenzhou(Grant No.CX202103).
文摘Nucleic acid analysis is a key technique that enables accurate detection of various microorganisms.Conventional nucleic acid testing typically requires access to specialized laboratories,equipment,and trained personnel,which hinders the widespread use of on-site testing for DNA and RNA targets.However,integrating gene editing technology with traditional nucleic acid detection methods,especially isothermal amplification technology,can help overcome the limitations associated with on-site testing.This combination can accomplish precise and swift detection of nucleic acid sequences,offering a robust tool for on-site detection.The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins(CRISPR/Cas)technology,which comprises the CRISPR system and Cas effector proteins,is a powerful tool that is advancing the field of nucleic acid detection.Specifically,Cas12,Cas13,and Cas14 proteins have emerged as straightforward,effective,precise,sensitive,and cost-effective methods for in vitro nucleic acid detection because of their“collateral cleavage”characteristics.When combined with the“collateral cleavage”ability of Cas protein and isothermal amplification,CRISPR/Cas systems have great potential to advance nucleic acid detection.This article summarizes the research progress of different CRISPR/Cas systems and their applications in nucleic acid detection and future perspectives.
基金supported by the National Natural Science Foundation of China(NSFC)(62422501)Beijing Nova Program(20230484254,20240484742)Hebei Natural Science Foundation(F2024105039).
文摘Implantable temperature sensors are revolutionizing physiological monitoring and playing a crucial role in diagnostics,therapeutics,and life sciences research.This review classifies the materials used in these sensors into three categories:metal-based,inorganic semiconductor,and organic semiconductor materials.Metal-based materials are widely used in medical and industrial applications due to their linearity,stability,and reliability.Inorganic semiconductors provide rapid response times and high miniaturization potential,making them promising for biomedical and environmental monitoring.Organic semiconductors offer high sensitivity and ease of processing,enabling the development of flexible and stretchable sensors.This review analyzes recent studies for each material type,covering design principles,performance characteristics,and applications,highlighting key advantages and challenges regarding miniaturization,sensitivity,response time,and biocompatibility.Furthermore,critical performance parameters of implantable temperature sensors based on different material types are summarized,providing valuable references for future sensor design and optimization.The future development of implantable temperature sensors is discussed,focusing on improving biocompatibility,long-term stability,and multifunctional integration.These advancements are expected to expand the application potential of implantable sensors in telemedicine and dynamic physiological monitoring.
基金National Natural Science Foundation of China under Grant No.52278534Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.
基金the National Natural Science Foundation of China(Grant No.51305372)the Open Fund Project of the Transportation Infrastructure Intelligent Management and Maintenance Engineering Technology Center of Xiamen City(Grant No.TCIMI201803)the Project of the 2011 Collaborative Innovation Center of Fujian Province(Grant No.2016BJC019).
文摘In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety.
基金Project(50679017) supported by the National Natural Science Foundation of China
文摘The construction process and load-bearing behaviors of Cast-in-place concrete thin-wall pipe piles are analyzed based on its application on Yantong Expressway Project. The low strain test, static load test and field excavation were also carried out, and the bearing capacity of the new pile can meet the requirements of design. With the increase of pile diameter, the bearing capacity is increased. The settlement of composite foundation is decreased, when the replacement ratio of pile is increased. The test results also show that the load carried by inner soils is neglectable. According to the tests and application, it can be concluded that the new type of pile is convenient to construction with high bearing capacity and reliable quality, which has great potential in practical engineering.
基金supported by Henan Province Higher Education Teaching Reform Research and Practice Project(No.2021SJGLX333)。
文摘Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality of hand hygiene and hospitalization.Follow-up monitoring and real-time recording during the period of morning shift and medical operation concentration time,and compare the compliance of hand hygiene before and after implementation,and evaluate the quality of nosocomial infection.Results:The hand hygiene compliance of doctors and nurses in stage P was 82%.The compliance of medical staff in stage D was 93%.The compliance of stage C was 94%and that of stage A was 95%.The quality score of hospital self-examination nosocomial infection was also significantly increased.Conclusions:The PDCA management cycle can effectively improve the compliance of hand hygiene and the nosocomial infection quality,which is wor thy of circulatory application in or thopedic nosocomial infection quality control,especially improving the quality of hand hygiene.
文摘Software projects influenced by many human factors generate various risks. In order to develop highly quality software, it is important to respond to these risks reasonably and promptly. In addition, it is not easy for project managers to deal with these risks completely. Therefore, it is essential to manage the process quality by promoting activities of process monitoring and design quality assessment. In this paper, we discuss statistical data analysis for actual project management activities in process monitoring and design quality assessment, and analyze the effects for these software process improvement quantitatively by applying the methods of multivariate analysis. Then, we show how process factors affect the management measures of QCD (Quality, Cost, Delivery) by applying the multiple regression analyses to observed process monitoring data. Further, we quantitatively evaluate the effect by performing design quality assessment based on the principal component analysis and the factor analysis. As a result of analysis, we show that the design quality assessment activities are so effective for software process improvement. Further, based on the result of quantitative project assessment, we discuss the usefulness of process monitoring progress assessment by using a software reliability growth model. This result may enable us to give a useful quantitative measure of product release determination.
基金Project(51405010)supported by the National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program of China
文摘For the purpose of improving efficiency and realizing start–stop function, an electric oil pump(EOP) is integrated into an 8-speed automatic transmission(AT). A mathematical model is built to calculate the transmission power loss and the hydraulic system leakage. Based on this model, a flow-based control strategy is developed for EOP to satisfy the system flow requirement. This control strategy is verified through the forward driving simulation. The results indicate that there is a best combination for the size of mechanical oil pump(MOP) and EOP in terms of minimum energy consumption. In order to get a quick and smooth starting process, control strategies of the EOP and the on-coming clutch are proposed. The test environment on a prototype vehicle is built to verify the feasibility of the integrated EOP and its control strategies. The results show that the selected EOP can satisfy the flow requirement and a quick and smooth starting performance is achieved in the start–stop function. This research has a high value for the forward design of EOP in automatic transmissions with respect to efficiency improvement and start–stop function.
文摘Background: Spasm is one of the most serious physical impairment after stroke. the external-application herbs have showed some effects on the spasm. This study was conducted to evaluate the comparative effectiveness of the external-application herbs and physical therapy in upper limb spasticity after stroke. Methods: A total of 100 patients with upper limb spasm after stroke (stroke time less than 1 month), have been recruited in Shun-yi Hospital of Beijing Traditional Chinese Medicine Hospital. Patients will be randomly allotted to one of two groups (N = 50, respectively): the TCM external application group, and the usual rehab (conventional physical therapy and medication treatment) group. The two groups will be administered once a month for three months. The primary outcome will be Modified Athworth Scale (MAS) and the simplified scale (Fugl-Meyer assessment, FMA) for upper limb. Results: Muscle tension and motor function were evaluated before and 4 weeks after treatments. There was a significant improvement in muscle tension and motor function in patients with stroke after the external-application herbs and physical therapy (P < 0.05). Conclusion: There was a significant improvement in kinematics in patients with stroke.
基金supported by the Assistance Program for Future Outstanding Talents of China University of Mining and Technology(No.2020WLJCRCZL041)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX20_0816).
文摘The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage.Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage.In this paper,based on the strain-softening model,the stress and permeability model of the coal seam around the enlarged borehole was built,and based on the dual-medium model,the gas migration model in the coal seam was established.Then the borehole enlargement gas drainage engineering of E9/10 coal seam in Pingdingshan No.8 coal mine was simulated by using COMSOL Multiphysics software.The distribution of stress and permeability in the coal seam around a borehole was analyzed,and the reasonable borehole radius of 0.25 m and reasonable borehole spacing of 6 m were determined.Finally,in Pingdingshan No.8 coal mine,field application was carried out in E9/10 coal seam-21070 working face from the high-level gas drainage roadway.The results show that the actual average coal slag discharge rate is 77.82%,which achieved borehole enlargement.The natural gas flow rate from an enlarged borehole is 2.3–7.3 times that of a normal borehole,and the influence range of enlarged boreholes is more than 6 m.The average gas drainage concentration of a group of enlarged boreholes is about 42%,and the average gas drainage amount is about 0.53 m3/min.After two months of gas extraction,the outburst risk in this area was eliminated,which provides a guarantee for safe coal mining.
基金Supported by National Natural Science Foundation of China(U1604110,U1404319,31600992,31801332)Key Project of Science and Technology in Henan Province(182102110442,152102110036)+6 种基金Nanhu Scholars Program for Young Scholars of XYNU(2016054)Scientific Research Innovation Project for Postgraduate of XYNU(2018KYJJ47)Major Science and Technology Project in Henan Province(121100110200)National Innovation and Entrepreneurship Training Program for Undergraduates(201810477004)Student Research Fund Project of XYNU(2018-DXS-066)Key Scientific Research Projects of Universities in Henan Province(19A180030)Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
文摘Amino acid transporters( AATs) play an important role in transport process of various amino acids,which are indispensable in plant growth and development,while many putative AATs have been identified and the complete genomic sequences of the important plants have already been completed by splicing and assembling. There is still little knowledge about the expression,regulation and various biological functions of AATs in plants,including the major food crops. This study mainly reviewed the expression,regulation and various biological functions of AATs in plants,and the application of AATs in crop genetic improvement was also prospected. Thus,this review will provide important information for genetic improvement of staple food crops in plants.
基金Supported by Scientific Innovation Program of Guangxi Aquatic,Animal Husbandry and Veterinary Bureau(1304519)
文摘The development of buffalo milk industry in China encounters the problems of small high yield populations and insufficient excellent provenance. There- fore, it is necessary to carry out dairy herd improvement (DHI) to increase dairy buffalo herd productivity. This paper reviewed the situation and problems of DHI in dairy buffalo, and the corresponding opinions and suggestions were put forward.
文摘In this paper, we conduct research on the pushover methodology and the applications on the bridge seismic performance improvement scenarios. Bridge is an important part of the traffic lifeline engineering, and after the earthquake, if the bridge damage, that will hinder the timely disaster relief operations, increase secondary disasters, not only cause the direct or indirect losses of people' s life and property, also affect the post-disaster recovery and reconstruction. Therefore, seismic design of the bridges has been people' s attention. From the earthquake when the bridge failure mechanism and the failure process point of view, to adjust the overall layout design of bridge structure, fundamentally improve the structural seismic performance as a whole. Our research proposes the novel paradigm for the corresponding challenges that will be meaningful.
文摘Targeted genome engineering refers to technologies that are used for site-specific genome modifications such as knockout, knockin and transcriptional regulation of genes of interest in organisms. Site-specific recombination system, zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) (CRISPR/Cas9) technologies are the representatives of targeted genome engineering and have been widely used in crop basic and applied research. In this review, we introduce the basic information and action modes of these different genome engineering technologies, summarize the recent progresses of targeted genome engineering technologies and their applications in crop improvement, and propose perspectives for genome engineering-mediated modifications of crop plants in the future.