Impact and torsion pendulums are applied in impulse coupling experiments of high-energy laser irradiation of space debris. It is difficult to achieve a multi-pulse experiment and thus hard to analyze the multi-pulse i...Impact and torsion pendulums are applied in impulse coupling experiments of high-energy laser irradiation of space debris. It is difficult to achieve a multi-pulse experiment and thus hard to analyze the multi-pulse impulse coupling effect. Here, we designed a new recoil impulse experimental measurement system of non-contact, multidegrees of freedom, and multi-pulse irradiation. The system used a low-pressure and low-temperature vacuum chamber to simulate the space environment, the pinning effect of magnetic levitation to achieve aluminum target suspension, and high-speed cameras to record the displacement over time to calculate the impulse of the target.Then the impulse coupling experiment of multi-pulse laser irradiation on the aluminum target was performed.The result shows that the multi-pulse impulse coupling effect is not the linear accumulation of coupling results by every single-pulse and multi-pulse coefficient that decreases with the increase of the number of pulses, and eventually stabilizes as the decrease gets smaller.展开更多
The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ...The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.展开更多
In this paper, the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling. When the ambient pressure varies from 9325 to 33325Pa, the compositions are vapour and plas...In this paper, the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling. When the ambient pressure varies from 9325 to 33325Pa, the compositions are vapour and plasma; while from 35325 to 101325Pa, they are ambient air and plasma. By analysing the relation between the degree of compression and the ambient pressure, the compositions can be determined and the variation of plasma can be explained.展开更多
Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics.This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupl...Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics.This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure.By constructing a proper Poincare map of the non-smooth system,an analytical expression of the Jacobian matrix of Poincare map is given.Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method.When the period is fixed and the coupling strength changes,the system undergoes stable,periodic,quasi-periodic,and hyper-chaotic solutions,etc.Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations.展开更多
A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interaction...A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.展开更多
Energy law of similitude for laser propulsion refers to the law that there is an optimum nozzle configuration for the largest value of impulse coupling coefficient at certain incident laser energy. A dimensionless fac...Energy law of similitude for laser propulsion refers to the law that there is an optimum nozzle configuration for the largest value of impulse coupling coefficient at certain incident laser energy. A dimensionless factor combined with incident laser energy, nozzle configuration parameters and working gas parameters is introduced. Energy law of similitude is established by means of theoretical analysis, experimental study and numerical simulation of radiation gas-dynamics. The qualitative results obtained from theoretical analysis are verified by experimental and numerical results. Physical meaning and engineering application of dimensionless factor and energy law of similitude are analyzed. Results indicate that ① impulse coupling coefficient has a maximurn value with dimensionless factor of about 0.4; ② impulse coupling coefficient is independent of incident laser energy when dimensionless factor is constant. Conclusions and recognitions acquired in this article can not only present optimum nozzle configurations for the present laser energy level, but also provide a good guide for the optimum nozzle configuration design once the laser energy is amplified to a high level.展开更多
This paper is devoted to the investigation of stability for a class of coupled impulsive Markovian jump reaction-diffusion systems on networks(CIMJRDSNs). By using graph theory, a systematic method is provided to cons...This paper is devoted to the investigation of stability for a class of coupled impulsive Markovian jump reaction-diffusion systems on networks(CIMJRDSNs). By using graph theory, a systematic method is provided to construct global Lyapunov functions for the CIMJRDSNs. Based on Lyapunov functions and stochastic analysis method, some novel stability principles associated with the topology property of the networks are established.展开更多
文摘Impact and torsion pendulums are applied in impulse coupling experiments of high-energy laser irradiation of space debris. It is difficult to achieve a multi-pulse experiment and thus hard to analyze the multi-pulse impulse coupling effect. Here, we designed a new recoil impulse experimental measurement system of non-contact, multidegrees of freedom, and multi-pulse irradiation. The system used a low-pressure and low-temperature vacuum chamber to simulate the space environment, the pinning effect of magnetic levitation to achieve aluminum target suspension, and high-speed cameras to record the displacement over time to calculate the impulse of the target.Then the impulse coupling experiment of multi-pulse laser irradiation on the aluminum target was performed.The result shows that the multi-pulse impulse coupling effect is not the linear accumulation of coupling results by every single-pulse and multi-pulse coefficient that decreases with the increase of the number of pulses, and eventually stabilizes as the decrease gets smaller.
基金Project supported by the National Natural Science Foundation of China (Grant No 60578015).
文摘The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 10^ 3 to 1.01 × 10^5pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.
基金Project supported by the National Science Foundation of China (Grant Nos 60578015 and 60208004)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050288025)
文摘In this paper, the compositions in a laser absorption region can be determined from the experiment of laser impulse coupling. When the ambient pressure varies from 9325 to 33325Pa, the compositions are vapour and plasma; while from 35325 to 101325Pa, they are ambient air and plasma. By analysing the relation between the degree of compression and the ambient pressure, the compositions can be determined and the variation of plasma can be explained.
基金supported by the National Natural Science Foundation of China(Grant Nos.11402224,11202180,61273106,and 11171290)the Qing Lan Project of the Jiangsu Higher Educational Institutions of Chinathe Jiangsu Overseas Research and Training Program for University Prominent Young and Middleaged Teachers and Presidents
文摘Impulsively coupled systems are high-dimensional non-smooth systems that can exhibit rich and complex dynamics.This paper studies the complex dynamics of a non-smooth system which is unidirectionally impulsively coupled by three Duffing oscillators in a ring structure.By constructing a proper Poincare map of the non-smooth system,an analytical expression of the Jacobian matrix of Poincare map is given.Two-parameter Hopf bifurcation sets are obtained by combining the shooting method and the Runge-Kutta method.When the period is fixed and the coupling strength changes,the system undergoes stable,periodic,quasi-periodic,and hyper-chaotic solutions,etc.Floquet theory is used to study the stability of the periodic solutions of the system and their bifurcations.
基金Projects(51605315,51478399)supported by the National Natural Science Foundation of ChinaProject(2013BAG20B00)supported by the National Key Technology R&D Program of ChinaProject(TPL1707)supported by the Open Project Program of the State Key Laboratory of Traction Power,China
文摘A heavy-haul train-track coupled model is developed. Taking the emergency braking of the 2×104 t combined train as example, the train longitudinal impulse, the coupler dynamic behaviors and wheel-rail interactions of vehicles distributing in the different positions are analyzed. The results indicate that under the coupler compressing forces, the couplers of middle locomotives may tilt to the free swing limits, which induces the unidirectional tilt of their connected wagon couplers. Consequently, the coupler longitudinal forces produce the lateral components, and then affect the wheel-rail dynamic interaction. The performance of the middle locomotive and their neighboring freight wagons deteriorate significantly, becoming the most dangerous parts in the combined train. The wagons disconnecting with the locomotives can basically keep their couplers to stabilize in the centering positions, even though the maximum coupler longitudinal force acts on it. And its corresponding running safety also has little changes.
基金National Natural Science Foundation of China ( 10672184) National Basic Research Program of China (61328)
文摘Energy law of similitude for laser propulsion refers to the law that there is an optimum nozzle configuration for the largest value of impulse coupling coefficient at certain incident laser energy. A dimensionless factor combined with incident laser energy, nozzle configuration parameters and working gas parameters is introduced. Energy law of similitude is established by means of theoretical analysis, experimental study and numerical simulation of radiation gas-dynamics. The qualitative results obtained from theoretical analysis are verified by experimental and numerical results. Physical meaning and engineering application of dimensionless factor and energy law of similitude are analyzed. Results indicate that ① impulse coupling coefficient has a maximurn value with dimensionless factor of about 0.4; ② impulse coupling coefficient is independent of incident laser energy when dimensionless factor is constant. Conclusions and recognitions acquired in this article can not only present optimum nozzle configurations for the present laser energy level, but also provide a good guide for the optimum nozzle configuration design once the laser energy is amplified to a high level.
基金supported by the National Natural Science Foundation of China under Grant Nos.61473097,11301090the State Key Program of Natural Science Foundation of China under Grant No.U1533202+2 种基金Shandong Independent Innovation and Achievements Transformation Fund under Grant No.2014CGZH1101Civil Aviation Administration of China under Grant No.MHRD20150104Guangxi Natural Science Foundation under Grant No.2016JJA110005
文摘This paper is devoted to the investigation of stability for a class of coupled impulsive Markovian jump reaction-diffusion systems on networks(CIMJRDSNs). By using graph theory, a systematic method is provided to construct global Lyapunov functions for the CIMJRDSNs. Based on Lyapunov functions and stochastic analysis method, some novel stability principles associated with the topology property of the networks are established.