A finite impulse-response microwave photonic filter is typically achieved based on spectrum-shaped optical frequency combs and a dispersive element. We propose an analytical model to describe the amplitude responses o...A finite impulse-response microwave photonic filter is typically achieved based on spectrum-shaped optical frequency combs and a dispersive element. We propose an analytical model to describe the amplitude responses of the sidelobes. The model shows that the sidelobe suppression ratio is limited by the spectrum structure of the optical combs. By taking Gaussian-profiled combs as an example, it is both theoretically and experimentally proved that the suppression ratio can be improved by optimizing the spectral power range, which is defined as the ratio of the maximum tap weight to the minimum tap weight.展开更多
基金supported by National"973"Program of China(Nos.2012CB315603 and 2012CB315604)the National Natural Science Foundation of China(Nos.61321004,61420106003,and 61427813)
文摘A finite impulse-response microwave photonic filter is typically achieved based on spectrum-shaped optical frequency combs and a dispersive element. We propose an analytical model to describe the amplitude responses of the sidelobes. The model shows that the sidelobe suppression ratio is limited by the spectrum structure of the optical combs. By taking Gaussian-profiled combs as an example, it is both theoretically and experimentally proved that the suppression ratio can be improved by optimizing the spectral power range, which is defined as the ratio of the maximum tap weight to the minimum tap weight.