This paper is concerned with the set-membership filtering problem for a class of linear time-varying systems with norm-bounded noises and impulsive measurement outliers.A new representation is proposed to model the me...This paper is concerned with the set-membership filtering problem for a class of linear time-varying systems with norm-bounded noises and impulsive measurement outliers.A new representation is proposed to model the measurement outlier by an impulsive signal whose minimum interval length(i.e.,the minimum duration between two adjacent impulsive signals)and minimum norm(i.e.,the minimum of the norms of all impulsive signals)are larger than certain thresholds that are adjustable according to engineering practice.In order to guarantee satisfactory filtering performance,a so-called parameter-dependent set-membership filter is put forward that is capable of generating a time-varying ellipsoidal region containing the true system state.First,a novel outlier detection strategy is developed,based on a dedicatedly constructed input-output model,to examine whether the received measurement is corrupted by an outlier.Then,through the outcome of the outlier detection,the gain matrix of the desired filter and the corresponding ellipsoidal region are calculated by solving two recursive difference equations.Furthermore,the ultimate boundedness issue on the time-varying ellipsoidal region is thoroughly investigated.Finally,a simulation example is provided to demonstrate the effectiveness of our proposed parameter-dependent set-membership filtering strategy.展开更多
In order to investigate the mechanisms of both the air-breathing and the ablation modes of laser propulsion under laboratory conditions, a multi-use laser impulse pendulum (MULIP) is developed. The measurable impulse ...In order to investigate the mechanisms of both the air-breathing and the ablation modes of laser propulsion under laboratory conditions, a multi-use laser impulse pendulum (MULIP) is developed. The measurable impulse range is from 1.0×10-4 to 3.8×10-3 N·s. The experimental calibration data agree well with the theoretical calculated data. With MULIP, the ablation mode has been performed, in which a high power pulsed Nd:glass laser (λ= 1.06μm, τ=20 ns) and a gray PVC film sample are used. The experimental results show that the maximum momentum coupling coefficient Cm is 7.73×10-5 N/W, and the maximum specific impulse Isp is 208.6 s.展开更多
Abstract Objective In order to investigate pathophysiology of exercise induced asthma (EIA), the impedance of the respiratory system was studied using impulse oscillometry (IOS). EIA is a temporary increase in airwa...Abstract Objective In order to investigate pathophysiology of exercise induced asthma (EIA), the impedance of the respiratory system was studied using impulse oscillometry (IOS). EIA is a temporary increase in airway resistance, which occurs after several minutes of strenuous exercise. Most asthmatics experience EIA. Patients and methods Respiratory impedance was measured with IOS (MasterScreen, Jaeger, Germany) in 14 healthy volunteers and 14 asthmatics as baseline value at first. The procedure of exercise challenge with an ergometer (Corival 300 Gould Co.) increased heart rate to 90% of predicted maximum values in 3-4 min and maintained for 6 min. After challenge, measurements with IOS were made immediately at 5 min intervals for 5 times. Results The maximal increase of respiratory impedance occurred at 5-10 min after exercise and the increment magnitude of peripheral resistance (99.6%) was more than that of central resistance (13.5%) in asthmatics. After challenge, R5Hz, R5Hz-R20Hz, Zrespir (total impedance), resonance frequency (Fres) and X5Hz from patients changed significantly. The increment value of R5Hz-R20Hz from asthmatics was≥0.032kpa/l·s -1 and the change ratio of X5Hz from 71.4% of asthmatics was ≥41% (2SD beyond the mean response of nonashmatics). Air trapping loop was expressed in V T Zrespir graph in 57.1% patients. All subjects underwent IOS measurement. Conclusion Exercise test can diagnose asthma and evaluate efficacy of treatment for bronchial asthma. Because the patients usually have shortness of breath after exercise challenge, the measurement with spirometry (FEV 1) may not be accurate. IOS is based on measurement of the relationship between an external pressure pulse applied to the respiratory system and the resulting respiratory airflow. The spectral ratio of the amplitude of the pressure wave signal to the resulting flow signal constitutes the impedance of the respiratory system, from which the resistance (R) and the reactance (X, including elastance and inertance) of respiratory system in the frequency range 5Hz to 35Hz can be calculated. Our data showed that the increment value of R5Hz-R20Hz was more sensitive than other indices for detecting exercise induced asthma. The bronchoconstriction took place in peripheral airway mainly after exercise. Because obstruction of small bronchi during expiration and impedance increased abruptly, air trapping loops were expressed in V T Zrespir graph after challenge in asthmatics. Fres is the frequency point where the absolute value of elastance equals to that of inertance. X5Hz reflects the condition of compliance of lungs. Fres shifted right and change ratio of X5Hz increased after exercise were relative to the compliance decrease of lungs. The airway response of exercise challenge may be assessed more accurately and more conveniently with IOS that did not require a maximal inspiration and forced expiration.展开更多
In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. ...In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.展开更多
基金supported in part by the National Natural Science Foundation of China(61703245,61873148,61933007)the China Postdoctoral Science Foundation(2018T110702)+3 种基金the Postdoctoral Special Innovation Foundation of of Shandong Province of China(201701015)the European Union’s Horizon 2020 Research and Innovation Programme(820776(INTEGRADDE))the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper is concerned with the set-membership filtering problem for a class of linear time-varying systems with norm-bounded noises and impulsive measurement outliers.A new representation is proposed to model the measurement outlier by an impulsive signal whose minimum interval length(i.e.,the minimum duration between two adjacent impulsive signals)and minimum norm(i.e.,the minimum of the norms of all impulsive signals)are larger than certain thresholds that are adjustable according to engineering practice.In order to guarantee satisfactory filtering performance,a so-called parameter-dependent set-membership filter is put forward that is capable of generating a time-varying ellipsoidal region containing the true system state.First,a novel outlier detection strategy is developed,based on a dedicatedly constructed input-output model,to examine whether the received measurement is corrupted by an outlier.Then,through the outcome of the outlier detection,the gain matrix of the desired filter and the corresponding ellipsoidal region are calculated by solving two recursive difference equations.Furthermore,the ultimate boundedness issue on the time-varying ellipsoidal region is thoroughly investigated.Finally,a simulation example is provided to demonstrate the effectiveness of our proposed parameter-dependent set-membership filtering strategy.
文摘In order to investigate the mechanisms of both the air-breathing and the ablation modes of laser propulsion under laboratory conditions, a multi-use laser impulse pendulum (MULIP) is developed. The measurable impulse range is from 1.0×10-4 to 3.8×10-3 N·s. The experimental calibration data agree well with the theoretical calculated data. With MULIP, the ablation mode has been performed, in which a high power pulsed Nd:glass laser (λ= 1.06μm, τ=20 ns) and a gray PVC film sample are used. The experimental results show that the maximum momentum coupling coefficient Cm is 7.73×10-5 N/W, and the maximum specific impulse Isp is 208.6 s.
文摘Abstract Objective In order to investigate pathophysiology of exercise induced asthma (EIA), the impedance of the respiratory system was studied using impulse oscillometry (IOS). EIA is a temporary increase in airway resistance, which occurs after several minutes of strenuous exercise. Most asthmatics experience EIA. Patients and methods Respiratory impedance was measured with IOS (MasterScreen, Jaeger, Germany) in 14 healthy volunteers and 14 asthmatics as baseline value at first. The procedure of exercise challenge with an ergometer (Corival 300 Gould Co.) increased heart rate to 90% of predicted maximum values in 3-4 min and maintained for 6 min. After challenge, measurements with IOS were made immediately at 5 min intervals for 5 times. Results The maximal increase of respiratory impedance occurred at 5-10 min after exercise and the increment magnitude of peripheral resistance (99.6%) was more than that of central resistance (13.5%) in asthmatics. After challenge, R5Hz, R5Hz-R20Hz, Zrespir (total impedance), resonance frequency (Fres) and X5Hz from patients changed significantly. The increment value of R5Hz-R20Hz from asthmatics was≥0.032kpa/l·s -1 and the change ratio of X5Hz from 71.4% of asthmatics was ≥41% (2SD beyond the mean response of nonashmatics). Air trapping loop was expressed in V T Zrespir graph in 57.1% patients. All subjects underwent IOS measurement. Conclusion Exercise test can diagnose asthma and evaluate efficacy of treatment for bronchial asthma. Because the patients usually have shortness of breath after exercise challenge, the measurement with spirometry (FEV 1) may not be accurate. IOS is based on measurement of the relationship between an external pressure pulse applied to the respiratory system and the resulting respiratory airflow. The spectral ratio of the amplitude of the pressure wave signal to the resulting flow signal constitutes the impedance of the respiratory system, from which the resistance (R) and the reactance (X, including elastance and inertance) of respiratory system in the frequency range 5Hz to 35Hz can be calculated. Our data showed that the increment value of R5Hz-R20Hz was more sensitive than other indices for detecting exercise induced asthma. The bronchoconstriction took place in peripheral airway mainly after exercise. Because obstruction of small bronchi during expiration and impedance increased abruptly, air trapping loops were expressed in V T Zrespir graph after challenge in asthmatics. Fres is the frequency point where the absolute value of elastance equals to that of inertance. X5Hz reflects the condition of compliance of lungs. Fres shifted right and change ratio of X5Hz increased after exercise were relative to the compliance decrease of lungs. The airway response of exercise challenge may be assessed more accurately and more conveniently with IOS that did not require a maximal inspiration and forced expiration.
文摘In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for Sturm-Liouville type differential inclusions which admit non-convex-valued multifunctions on right hand side. Two results under weaker conditions are presented. The methods rely on a fixed point theorem for contraction multi-valued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semi-continuous multi-valued operators with decomposable values.