This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s...This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.展开更多
We studied the conjunction practical stability and controllability of large-scale impulsive control systems by using the comparison systems and vector Lyapunov fimctions. Then the less conservative sufficient conditio...We studied the conjunction practical stability and controllability of large-scale impulsive control systems by using the comparison systems and vector Lyapunov fimctions. Then the less conservative sufficient conditions for conjunction practical stability and controllability of large-scale impulsive control system were obtained.展开更多
Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the...Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.展开更多
This paper investigates a class of coupled neural networks with delays and ad-dresses the exponential synchronization problem using delay-compensatory impulsive control. Razumikhin-type inequalities involving some des...This paper investigates a class of coupled neural networks with delays and ad-dresses the exponential synchronization problem using delay-compensatory impulsive control. Razumikhin-type inequalities involving some destabilizing delayed impulse gains are proposed, along with a new delay-compensatory concept demonstrating two crucial roles in system stability. Based on the constructed inequalities and the introduced delay-compensatory concept, sufficient stability and synchronization criteria for globally exponential synchronization of coupled neural networks are provided. To address the exponential synchronization problem in coupled neural networks. Utilizing delay-compensatory impulsive control and Razumikhin-type inequalities. The Lyapunov function for coupled neural networks with delays and integral terms exhibits exponential estimates.展开更多
Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heav...Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heavy loss.Therefore,the problem of mean-square bounded synchronization in multi-agent systems subject to deception attacks is investigated in this paper.The control signals can be replaced with false data from controllerto-actuator channels or the controller.The success of the attack is measured through a stochastic variable.A distributed impulsive controller using a pinning strategy is redesigned,which ensures that mean-square bounded synchronization is achieved in the presence of deception attacks.Some sufficient conditions are derived,in which upper bounds of the synchronization error are given.Finally,two numerical simulations with symmetric and asymmetric network topologies are given to illustrate the theoretical results.展开更多
The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven...The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.展开更多
In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems ...In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchroniz...In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.展开更多
In this paper, a practical impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. By virtue of the new definition of synchronization and the theory of impulsive d...In this paper, a practical impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. By virtue of the new definition of synchronization and the theory of impulsive differential equations, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level. The idea and approach developed in this paper can provide a more practical framework for the synchronization between identical and different chaotic systems in parameter perturbation circumstances. Simulation results finally demonstrate the effectiveness of the method.展开更多
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impu...In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.展开更多
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov f...A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.展开更多
A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), so...A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.展开更多
The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the g...The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.展开更多
In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be i...In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.展开更多
In this paper, with a given manifold y = H(x), we have constructed a response system for a continuous-time chaotic system as a drive system, and used impulsive control theory to demonstrate theoretically that this r...In this paper, with a given manifold y = H(x), we have constructed a response system for a continuous-time chaotic system as a drive system, and used impulsive control theory to demonstrate theoretically that this response system can achieve impulsive generalized synchronization (GS) with the drive system. Our theoretical result is supported by numerical examples.展开更多
By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impu...By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.展开更多
A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven ope...A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results.展开更多
This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented...This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lu system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.展开更多
This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control...This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control method, some new criteria are obtained to guarantee the impulsively controlled chaotic system and error system to be globally asymptotically stable at origin. Moreover, to be some simulation results are included to visualize the effectiveness and feasibility of the proposed method.展开更多
基金supported by National Natural Science Foundation of China (62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04, ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)。
文摘This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.
文摘We studied the conjunction practical stability and controllability of large-scale impulsive control systems by using the comparison systems and vector Lyapunov fimctions. Then the less conservative sufficient conditions for conjunction practical stability and controllability of large-scale impulsive control system were obtained.
基金the financial support from the National Natural Science Foundation of China(12171405 and 11661074)the Program for New Century Excellent Talents in Fujian Province University+2 种基金the financial support from the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)Collaborative Innovation Center of Statistical Data Engineering Technology&ApplicationDigital+Discipline Construction Project(SZJ2022B004)。
文摘Motivated by recent advances made in the study of dividend control and risk management problems involving the U.S.bankruptcy code,in this paper we follow[44]to revisit the De Finetti dividend control problem under the reorganization process and the regulator's intervention documented in U.S.Chapter 11 bankruptcy.We do this by further accommodating the fixed transaction costs on dividends to imitate the real-world procedure of dividend payments.Incorporating the fixed transaction costs transforms the targeting optimal dividend problem into an impulse control problem rather than a singular control problem,and hence computations and proofs that are distinct from[44]are needed.To account for the financial stress that is due to the more subtle concept of Chapter 11 bankruptcy,the surplus process after dividends is driven by a piece-wise spectrally negative Lévy process with endogenous regime switching.Some explicit expressions of the expected net present values under a double barrier dividend strategy,new to the literature,are established in terms of scale functions.With the help of these expressions,we are able to characterize the optimal strategy among the set of admissible double barrier dividend strategies.When the tail of the Lévy measure is log-convex,this optimal double barrier dividend strategy is then verified as the optimal dividend strategy,solving our optimal impulse control problem.
文摘This paper investigates a class of coupled neural networks with delays and ad-dresses the exponential synchronization problem using delay-compensatory impulsive control. Razumikhin-type inequalities involving some destabilizing delayed impulse gains are proposed, along with a new delay-compensatory concept demonstrating two crucial roles in system stability. Based on the constructed inequalities and the introduced delay-compensatory concept, sufficient stability and synchronization criteria for globally exponential synchronization of coupled neural networks are provided. To address the exponential synchronization problem in coupled neural networks. Utilizing delay-compensatory impulsive control and Razumikhin-type inequalities. The Lyapunov function for coupled neural networks with delays and integral terms exhibits exponential estimates.
基金supported by the National Natural Science Foundation of China(61988101,61922030,61773163)Shanghai Rising-Star Program(18QA1401400)+3 种基金the International(Regional)Cooperation and Exchange Project(61720106008)the Natural Science Foundation of Shanghai(17ZR1406800)the Fundamental Research Funds for the Central Universitiesthe 111 Project(B17017)。
文摘Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heavy loss.Therefore,the problem of mean-square bounded synchronization in multi-agent systems subject to deception attacks is investigated in this paper.The control signals can be replaced with false data from controllerto-actuator channels or the controller.The success of the attack is measured through a stochastic variable.A distributed impulsive controller using a pinning strategy is redesigned,which ensures that mean-square bounded synchronization is achieved in the presence of deception attacks.Some sufficient conditions are derived,in which upper bounds of the synchronization error are given.Finally,two numerical simulations with symmetric and asymmetric network topologies are given to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant No 60604007)
文摘The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10926066 and 11026182)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6100007)+3 种基金the Zhejiang Educational Committee,China(Grant No.Y200805720)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010408)the Innovation Fund of Basic Scientific Research Operating Expenses,China(Grant No.3207010501)the Alexander von Humboldt Foundation of Germany
文摘In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50830202 and 51073179)the Natural Science Foundation of Chongqing,China (Grant No. CSTC 2010BB2238)+2 种基金the Doctoral Program of Higher Education Foundation of Institutions of China (Grant Nos. 20090191110011 and 20100191120025)the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20100470813 and 20100480043)the Fundamental Research Funds for the Central Universities(Grant Nos. CDJZR11 12 00 03 and CDJZR11 12 88 01)
文摘In this paper, a modified impulsive control scheme is proposed to realize the complete synchronization of fractional order hyperchaotic systems. By constructing a suitable response system, an integral order synchronization error system is obtained. Based on the theory of Lyapunov stability and the impulsive differential equations, some effective sufficient conditions are derived to guarantee the asymptotical stability of the synchronization error system. In particular, some simpler and more convenient conditions are derived by taking the fixed impulsive distances and control gains. Compared with the existing results, the main results in this paper are practical and rigorous. Simulation results show the effectiveness and the feasibility of the proposed impulsive control method.
基金Project supported by the National Natural Science foundation of China (Grant Nos 60534010, 60572070, 60774048 and 60728307)the Program for Changjiang Scholars and Innovative Research Team in University (Grant No 60521003) the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)
文摘In this paper, a practical impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. By virtue of the new definition of synchronization and the theory of impulsive differential equations, some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level. The idea and approach developed in this paper can provide a more practical framework for the synchronization between identical and different chaotic systems in parameter perturbation circumstances. Simulation results finally demonstrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation of China (Grant No 20062018)State Key Development Program for Basic research of China (Grant No 2009CB320601)111 Project,China (Grant No B08015)
文摘In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.
文摘A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+1 种基金Liaoning Provincial Natural Science Foundation,China (Grant No 20062018)111 Project (Grant No B08015)
文摘A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (6090402060574006)the Research Fund for the Doctoral Program of Higher Eolucation of China (20070286039)
文摘The globally exponential stability of nonlinear impul- sive networked control systems (NINCS) with time delay and packet dropouts is investigated. By applying Lyapunov function theory, sufficient conditions on the global exponential stability are derived by introducing a comparison system and estimating the corresponding Cauchy matrix. An impulsive controller is explicitly designed to achieve exponential stability and ensure state con- verge with a given decay rate for the system. The Lorenz oscillator system is presented as a numerical example to illustrate the theo- retical results and effectiveness of the proposed controller design procedure.
基金Project supported by the Tianyuan Special Funds of the National Natural Science Foundation of China(Grant No.11226242)the Natural Science Foundation of Jiangxi Province of China(Grant No.20122BAB211006)
文摘In this paper, structure identification of an uncertain network coupled with complex-variable chaotic systems is in- vestigated. Both the topological structure and the system parameters can be unknown and need to be identified. Based on impulsive stability theory and the Lyapunov function method, an impulsive control scheme combined with an adaptive strategy is adopted to design effective and universal network estimators. The restriction on the impulsive interval is relaxed by adopting an adaptive strategy. Further, the proposed method can monitor the online switching topology effectively. Several numerical simulations are provided to illustrate the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10372054).
文摘In this paper, with a given manifold y = H(x), we have constructed a response system for a continuous-time chaotic system as a drive system, and used impulsive control theory to demonstrate theoretically that this response system can achieve impulsive generalized synchronization (GS) with the drive system. Our theoretical result is supported by numerical examples.
文摘By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50775226)the Chongqing Natural Science Foundation (Grant No. CSTC, 2008BB3308)the Innovation Training Foundation of Chongqing University (Grant No. CDCX004)
文摘A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results.
基金supported by the National Natural Science Foundation of China(Grant No 60604007)
文摘This paper presents a novel approach to hyperchaos control of hyperchaotic systems based on impulsive control and the Takagi-Sugeno (T-S) fuzzy model. In this study, the hyperchaotic Lu system is exactly represented by the T-S fuzzy model and an impulsive control framework is proposed for stabilizing the hyperchaotic Lu system, which is also suitable for classes of T-S fuzzy hyperchaotic systems, such as the hyperchaotic Rossler, Chen, Chua systems and so on. Sufficient conditions for achieving stability in impulsive T-S fuzzy hyperchaotic systems are derived by using Lyapunov stability theory in the form of the linear matrix inequality, and are less conservative in comparison with existing results. Numerical simulations are given to demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (60574045)
文摘This paper investigates the impulsive control and synchronization of a chaotic system, which is a particular case of the so-called generalized Lorenz canonical form (GLCF) with r τ -1 Based on the impulsive control method, some new criteria are obtained to guarantee the impulsively controlled chaotic system and error system to be globally asymptotically stable at origin. Moreover, to be some simulation results are included to visualize the effectiveness and feasibility of the proposed method.