This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s...This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.展开更多
By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequ...By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.展开更多
The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into tw...The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into two groups. One set of actuators susceptible to failures is possible to fail, the other set of actuators robust to failures is assumed never to fail. The outputs of the actuator failures are regarded as zero. The purpose is to design the state feedback controller such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains asymptotically stable. A modified algebraic Riccati equation approach was developed to solve the problem addressed and a robust reliable control law was obtained. An numerical example was also offered to prove the effectiveness of the proposed method.展开更多
Dear Editor,This letter establishes several criteria for fixed-time stability and predefined-time stability of impulsive systems.First,sufficient conditions for fixed-time stability of impulsive systems are presented ...Dear Editor,This letter establishes several criteria for fixed-time stability and predefined-time stability of impulsive systems.First,sufficient conditions for fixed-time stability of impulsive systems are presented to treat the destabilizing impulses and hybrid impulses involving multiple jump maps by fixed-time control without linear feedback regulation.It determines the robustness of nonlinear systems against impulsive disturbance which has destabilizing and hybrid effect to dynamics.展开更多
In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The co...In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The conditions of existence for flip bifurcation are derived by using the centre manifold theorem and bifurcation theorem. The bifurcation analysis shows that chaotic solutions appear via a cascade of period-doubling in some interval of parameters. Moreover, the periodic solutions, the bifurcation diagram, and the chaotic attractor, which show their consistence with the theoretical analyses, are given in an example.展开更多
In this article,we present the existence,uniqueness,Ulam-Hyers stability and Ulam-Hyers-Rassias stability of semilinear nonautonomous integral causal evolution impulsive integro-delay dynamic systems on time scales,wi...In this article,we present the existence,uniqueness,Ulam-Hyers stability and Ulam-Hyers-Rassias stability of semilinear nonautonomous integral causal evolution impulsive integro-delay dynamic systems on time scales,with the help of a fixed point approach.We use Gronwall’s inequality on time scales,an abstract Growall’s lemma and a Picard operator as basic tools to develop our main results.To overcome some difficulties,we make a variety of assumptions.At the end an example is given to demonstrate the validity of our main theoretical results.展开更多
This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a...This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a discrete-time impulsive systems. Then, a sufficient condition of asymptotical stability and H∞ performance for the filtering error systems are provided by the discrete-time Lyapunov function method. The filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show effectiveness of the obtained result.展开更多
Dear Editor,This letter studies finite-time input-to-state stability(FTISS)for impulsive switched systems.A set of Lyapunov-based conditions are established for guaranteeing FTISS property.When constituent modes gover...Dear Editor,This letter studies finite-time input-to-state stability(FTISS)for impulsive switched systems.A set of Lyapunov-based conditions are established for guaranteeing FTISS property.When constituent modes governing continuous dynamics are FTISS and discrete dynamics involving impulses are destabilizing,the FTISS can be retained if impulsive-switching signals satisfy an average dwell-time(ADT)condition.展开更多
This paper studies the existence, uniqueness, and stability of solutions for stochastic impulsive systems. By employing Lyapunov-like functions, some sufficient conditions of the global existence, uniqueness, and stab...This paper studies the existence, uniqueness, and stability of solutions for stochastic impulsive systems. By employing Lyapunov-like functions, some sufficient conditions of the global existence, uniqueness, and stability of solutions for stochastic impulsive systems are established. Furthermore, the results are specialized to the case of linear stochastic impulsive systems. Finally, some examples are given to illustrate the applications of our theory.展开更多
This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From th...This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.展开更多
This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information o...This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
Optimal control technique is crucial to improve the yield of microbial fermentation production.In this paper,we propose a nonlinear control system with state-dependent impulses,where the impulsive volume of feeding gl...Optimal control technique is crucial to improve the yield of microbial fermentation production.In this paper,we propose a nonlinear control system with state-dependent impulses,where the impulsive volume of feeding glycerol and the critical concentration of glycerol for occurring impulse are the control variables,to formulate 1,3-propanediol(1,3-PD)fed-batch production process.We also discuss a quantity of important properties for this control system.Then,we analyze the sensitivity of system state with respect to the kinetic parameters.We further propose a constrained optimal control model governed by the control system with state-dependent impulses.The existence of the optimal impulsive controls is established.For solving this problem,we utilize an exact penalty method to transform the problem into an optimization problem with only box constraints.Moreover,an improved differential evolution method is developed to seek the optimal impulsive strategy.Finally,numerical simulation results demonstrate that,by using the optimal impulsive strategies,final 1,3-PD concentration is considerably increased under the nominal parameter values and disturbances of kinetic parameters have significant effects on the optimal final 1,3-PD yield.展开更多
Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finit...Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.展开更多
In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time st...In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time stability is presented.2)When the system without impulsive effects is globally finite-time stable(GFTS)and the settling time is continuous at the origin,it is proved that it is still GFTS over any class of impulse sequences,if the mixed impulsive jumps satisfy some mild conditions.3)For systems with destabilizing impulses,it is shown that to be finite-time stable,the destabilizing impulses should not occur too frequently,otherwise,the origin of the impulsive system is finite-time instable,which are formulated by average dwell time(ADT)conditions respectively.4)A theorem on finite-time instability is provided for system with stabilizing impulses.For each GFTS theorem of impulsive systems considered in this paper,the upper boundedness of settling time is given,which depends on the initial value and impulsive effects.Some numerical examples are given to illustrate the theoretical analysis.展开更多
This paper studies the controllability and observability for a class of fractionalorder impulsive systems.First,the basic acknowledgement of fractional-order systems is presented.Then the solution of the fractional-or...This paper studies the controllability and observability for a class of fractionalorder impulsive systems.First,the basic acknowledgement of fractional-order systems is presented.Then the solution of the fractional-order impulsive systems is given.Finally,necessary and sufficient criteria for controllability and observability are obtained.展开更多
Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heav...Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heavy loss.Therefore,the problem of mean-square bounded synchronization in multi-agent systems subject to deception attacks is investigated in this paper.The control signals can be replaced with false data from controllerto-actuator channels or the controller.The success of the attack is measured through a stochastic variable.A distributed impulsive controller using a pinning strategy is redesigned,which ensures that mean-square bounded synchronization is achieved in the presence of deception attacks.Some sufficient conditions are derived,in which upper bounds of the synchronization error are given.Finally,two numerical simulations with symmetric and asymmetric network topologies are given to illustrate the theoretical results.展开更多
Several boundedness criteria for the impulsive integro-differential systems with fixed moments of impulse effects are established, employing the method of Lyapunov functions and Razumikhin technique.
This paper reports that an impulsive control theory for synchronization of nonlinear Rossler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which...This paper reports that an impulsive control theory for synchronization of nonlinear Rossler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronizution law. The proposed impulsive control scheme is illustrated by nonlinear Rossler chaotic systems and the simulation results demonstrate the effectiveness of the method.展开更多
In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems ...In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.展开更多
基金supported by National Natural Science Foundation of China (62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04, ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)。
文摘This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.
文摘By using the quasi-Lyapunov function, some sufficient conditions of global exponential stability for impulsive systems are established, which is the basis for the following discussion. Then, by employing Riccati inequality and Hamilton-Jacobi inequality approach, some sufficient conditions of robust exponential stability for uncertain linear/nonlinear impulsive systems are derived, respectively. Finally, some examples are given to illustrate the applications of the theory.
基金Project (60474003) supported by the National Natural Science Foundation of China
文摘The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into two groups. One set of actuators susceptible to failures is possible to fail, the other set of actuators robust to failures is assumed never to fail. The outputs of the actuator failures are regarded as zero. The purpose is to design the state feedback controller such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains asymptotically stable. A modified algebraic Riccati equation approach was developed to solve the problem addressed and a robust reliable control law was obtained. An numerical example was also offered to prove the effectiveness of the proposed method.
基金This work was supported in part by the National Natural Science Foundation of China(62203284,62173215)the Natural Science Foundation of Shandong Province(ZR2021QF048)the Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24).
文摘Dear Editor,This letter establishes several criteria for fixed-time stability and predefined-time stability of impulsive systems.First,sufficient conditions for fixed-time stability of impulsive systems are presented to treat the destabilizing impulses and hybrid impulses involving multiple jump maps by fixed-time control without linear feedback regulation.It determines the robustness of nonlinear systems against impulsive disturbance which has destabilizing and hybrid effect to dynamics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572011, 100461002, and 10661005)the Natural Science Foundation of Guangxi Province, China (Grant Nos 0575092 and 0832244)
文摘In this paper, the dynamical behaviour of a linear impulsive system is discussed both theoretically and numerically. The existence and the stability of period-one solution are discussed by using a discrete map. The conditions of existence for flip bifurcation are derived by using the centre manifold theorem and bifurcation theorem. The bifurcation analysis shows that chaotic solutions appear via a cascade of period-doubling in some interval of parameters. Moreover, the periodic solutions, the bifurcation diagram, and the chaotic attractor, which show their consistence with the theoretical analyses, are given in an example.
基金supported by Talent Project of Chongqing Normal University(02030307-0040)the China Posdoctoral Science Foundation(2019M652348)+1 种基金Natural Science Foundation of Chongqing(cstc2020jcyj-msxm X0123)Technology Research Foundation of Chongqing Educational Committee(KJQN202000528,KJQN201900539)。
文摘In this article,we present the existence,uniqueness,Ulam-Hyers stability and Ulam-Hyers-Rassias stability of semilinear nonautonomous integral causal evolution impulsive integro-delay dynamic systems on time scales,with the help of a fixed point approach.We use Gronwall’s inequality on time scales,an abstract Growall’s lemma and a Picard operator as basic tools to develop our main results.To overcome some difficulties,we make a variety of assumptions.At the end an example is given to demonstrate the validity of our main theoretical results.
基金supported by the National Natural Science Foundation of China (No. 60874027)
文摘This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a discrete-time impulsive systems. Then, a sufficient condition of asymptotical stability and H∞ performance for the filtering error systems are provided by the discrete-time Lyapunov function method. The filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show effectiveness of the obtained result.
基金the National Natural Science Foundation of China(61833005)。
文摘Dear Editor,This letter studies finite-time input-to-state stability(FTISS)for impulsive switched systems.A set of Lyapunov-based conditions are established for guaranteeing FTISS property.When constituent modes governing continuous dynamics are FTISS and discrete dynamics involving impulses are destabilizing,the FTISS can be retained if impulsive-switching signals satisfy an average dwell-time(ADT)condition.
基金This research is supported by the National Natural Science Foundation of China under Grant No. 60274007, and the Post Doctoral Foundation of China and the Excellent Young Program of the Education Department of Hunan Province under Grant No. 04B068, and the NSERC-Canada.
文摘This paper studies the existence, uniqueness, and stability of solutions for stochastic impulsive systems. By employing Lyapunov-like functions, some sufficient conditions of the global existence, uniqueness, and stability of solutions for stochastic impulsive systems are established. Furthermore, the results are specialized to the case of linear stochastic impulsive systems. Finally, some examples are given to illustrate the applications of our theory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10902085)
文摘This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations, and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability. From the comparison theory, it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterministic comparison system. As a general application of this theory, it controls the chaos of stochastic Lii system using impulsive control method, and numerical simulations are employed to verify the feasibility of this method.
基金This work was supported by the National Natural Science Foundation of China(62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2019KJI008).
文摘This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
基金supported by the National Natural Science Foundation of China(Grant No.12271307)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019MA031).
文摘Optimal control technique is crucial to improve the yield of microbial fermentation production.In this paper,we propose a nonlinear control system with state-dependent impulses,where the impulsive volume of feeding glycerol and the critical concentration of glycerol for occurring impulse are the control variables,to formulate 1,3-propanediol(1,3-PD)fed-batch production process.We also discuss a quantity of important properties for this control system.Then,we analyze the sensitivity of system state with respect to the kinetic parameters.We further propose a constrained optimal control model governed by the control system with state-dependent impulses.The existence of the optimal impulsive controls is established.For solving this problem,we utilize an exact penalty method to transform the problem into an optimization problem with only box constraints.Moreover,an improved differential evolution method is developed to seek the optimal impulsive strategy.Finally,numerical simulation results demonstrate that,by using the optimal impulsive strategies,final 1,3-PD concentration is considerably increased under the nominal parameter values and disturbances of kinetic parameters have significant effects on the optimal final 1,3-PD yield.
基金supported in part by the National Natural Science Foundation of China(60374015)
文摘Many practical systems in physics, biology, engineer- ing and information science exhibit impulsive dynamical behaviors due to abrupt changes at certain instants during the dynami- cal processes. The problems of finite-time stab!lity analysis are investigated for a class of Markovian switching stochastic sys- tems, in which exist impulses at the switching instants. Multiple Lyapunov techniques are used to derive sufficient conditions for finite-time stochastic stability of the overall system. Furthermore, a state feedback controller, which stabilizes the closed loop sys- tems in the finite-time sense, is then addressed. Moreover, the controller appears not only in the shift part but also in the diffu- sion part of the underlying stochastic subsystem. The results are reduced to feasibility problems involving linear matrix inequalities (LMIs). A numerical example is presented to illustrate the proposed methodology.
基金National Natural Science Foundation of China(No.61807017)the National Natural Science Foundation of China(Nos.12171122,11771128)+3 种基金Shenzhen Science and Technology Program(Grant No.RCJC20210609103755110)Fundamental Research Project of Shenzhen(No.JCYJ20190806143201649)Project(HIT.NSRIF.2020056)Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of TechnologyResearch start-up fund Foundation in Harbin Institute of Technology(No.20190019)。
文摘In this paper,the finite-time stability and instability are studied for nonlinear impulsive systems.There are mainly four concerns.1)For the system with stabilizing impulses,a Lyapunov theorem on global finite-time stability is presented.2)When the system without impulsive effects is globally finite-time stable(GFTS)and the settling time is continuous at the origin,it is proved that it is still GFTS over any class of impulse sequences,if the mixed impulsive jumps satisfy some mild conditions.3)For systems with destabilizing impulses,it is shown that to be finite-time stable,the destabilizing impulses should not occur too frequently,otherwise,the origin of the impulsive system is finite-time instable,which are formulated by average dwell time(ADT)conditions respectively.4)A theorem on finite-time instability is provided for system with stabilizing impulses.For each GFTS theorem of impulsive systems considered in this paper,the upper boundedness of settling time is given,which depends on the initial value and impulsive effects.Some numerical examples are given to illustrate the theoretical analysis.
基金Supported by the National Natural Science Foundation of China (No.10771001)the Key Program of Ministry of Education of China (No.205068)the Innovation Group Program of Anhui University
文摘This paper studies the controllability and observability for a class of fractionalorder impulsive systems.First,the basic acknowledgement of fractional-order systems is presented.Then the solution of the fractional-order impulsive systems is given.Finally,necessary and sufficient criteria for controllability and observability are obtained.
基金supported by the National Natural Science Foundation of China(61988101,61922030,61773163)Shanghai Rising-Star Program(18QA1401400)+3 种基金the International(Regional)Cooperation and Exchange Project(61720106008)the Natural Science Foundation of Shanghai(17ZR1406800)the Fundamental Research Funds for the Central Universitiesthe 111 Project(B17017)。
文摘Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heavy loss.Therefore,the problem of mean-square bounded synchronization in multi-agent systems subject to deception attacks is investigated in this paper.The control signals can be replaced with false data from controllerto-actuator channels or the controller.The success of the attack is measured through a stochastic variable.A distributed impulsive controller using a pinning strategy is redesigned,which ensures that mean-square bounded synchronization is achieved in the presence of deception attacks.Some sufficient conditions are derived,in which upper bounds of the synchronization error are given.Finally,two numerical simulations with symmetric and asymmetric network topologies are given to illustrate the theoretical results.
文摘Several boundedness criteria for the impulsive integro-differential systems with fixed moments of impulse effects are established, employing the method of Lyapunov functions and Razumikhin technique.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60271019), the Doctorate Foundation of the Ministry of Education of China (Grant No 20020611007).
文摘This paper reports that an impulsive control theory for synchronization of nonlinear Rossler chaotic systems is developed. A new framework for impulsive synchronization between such chaotic systems is presented, which makes the synchronization error system a linear impulsive control system. Therefore, it is easy to derive the impulsive synchronizution law. The proposed impulsive control scheme is illustrated by nonlinear Rossler chaotic systems and the simulation results demonstrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10926066 and 11026182)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y6100007)+3 种基金the Zhejiang Educational Committee,China(Grant No.Y200805720)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010408)the Innovation Fund of Basic Scientific Research Operating Expenses,China(Grant No.3207010501)the Alexander von Humboldt Foundation of Germany
文摘In this paper, some novel sufficient conditions for asymptotic stability of impulsive control systems are presented by comparison systems. The results are used to obtain the conditions under which the chaotic systems can be asymptotically controlled to the origin via impulsive control. Compared with some existing results, our results are more relaxed in the sense that the Lyapunov function is required to be nonincreasing only along a subsequence of switchings. Moreover, a larger upper bound of impulsive intervals for stabilization and synchronization is obtained.