We have measured the deep energy level of the InP: Fe which is semi -insulator through the method of OTCS. The effect of light intensity on OTCS measurement is mainly discussed. There are electron trap of E_T =0.34 eV...We have measured the deep energy level of the InP: Fe which is semi -insulator through the method of OTCS. The effect of light intensity on OTCS measurement is mainly discussed. There are electron trap of E_T =0.34 eV and hole trap of E_T = 1.13 eV in InP: Fe under the strong light and low temperature. The location of the OTCS peak of electron trap (E_T = 0.34 eV) moves towards the direction of high temperaturer, when the light intensity was increased, E_T is different under different light intensity. It is corrected in terms of theory that the stuff ratio of the deep energy level is affected by the light intensity. The experiments show that the error is decreased greatly with the correction.展开更多
Off-center impurity effects in a spherical quantum dot are theoretically studied by degenerate perturbationmethod in strong confinement.The energy levels and binding energies are computed for the typical GaAs material...Off-center impurity effects in a spherical quantum dot are theoretically studied by degenerate perturbationmethod in strong confinement.The energy levels and binding energies are computed for the typical GaAs material asfunction of the donor position.The numerical results show the quantum size effect.We note that the energy levels andbinding energies are not only related to the position of donor and the strength of confinement,but also related to thefold of degenerate states.We can see obviously that gaps will appear among the degenerate states and the splitting ofenergy levels and binding energies will appear as the position of the impurity is shifted away off the center.展开更多
In order to better understand the bonding mechanisms of the phosphorus-doped diamond films and the influences of the phosphorus-doped concentration on the diamond lattice integrity and conductivity,we calculate the el...In order to better understand the bonding mechanisms of the phosphorus-doped diamond films and the influences of the phosphorus-doped concentration on the diamond lattice integrity and conductivity,we calculate the electronic structures of the phosphorus-doped diamond with different phosphorus concentrations and the density of states in the phosphorus--doped diamond films with a vacant lattice site by the first principle method.The calculation results show the phosphorus atom only affects the bonds of a few atoms in its vicinity,and the conductivity increases as the doped concentration increases.Also in the diamond lattice with a total number of 64 atoms and introducing a vacancy into the non-nearest neighbor lattice site of a phosphorus atom,we have found that both the injuries of the phosphorus-doped diamond films and the N-type electron conductivity of diamond films could be improved.展开更多
Copper doped n-type single-crystal silicon materials are prepared by a high temperature diffusion process. The electrical and thermal-sensitive characteristic of materials is investigated under different experimental ...Copper doped n-type single-crystal silicon materials are prepared by a high temperature diffusion process. The electrical and thermal-sensitive characteristic of materials is investigated under different experimental conditions. The results show that the maximum resistivity of 46.2 Ω·cm is obtained when the sample is treated at 1200℃ for 2 h with the surface concentration of the copper dopant source being 1.83×10^7mol/cm^2. The copper doped n-type silicon material presents a negative temperature-sensitive characteristic and the B values are about 3010–4130 K.展开更多
Silicon materials compensated by deep level impurities such as nickel and gold have negative temperature coefficient (NTC) characteristics. In this work, n-type silicon wafers are smeared by nickel chloride ethanol ...Silicon materials compensated by deep level impurities such as nickel and gold have negative temperature coefficient (NTC) characteristics. In this work, n-type silicon wafers are smeared by nickel chloride ethanol solution and gold chloric acid ethanol solution, and subsequently put in the opening environment to heat. The electrical resistance and B-value of the thermistors made by this silicon material are measured and analyzed. When the silicon surface concentration of gold atoms is 2 × 10-6 mol/cm2, the uniformity of the single-crystal silicon material is optimal. When the diffusion temperature is between 900 and 1000 ℃, a material with high B-value and low electrical resistivity is obtained. The B-T and R-T change laws calculated by the theory of semiconductor deep level energy are basically consistent with the experimental results.展开更多
文摘We have measured the deep energy level of the InP: Fe which is semi -insulator through the method of OTCS. The effect of light intensity on OTCS measurement is mainly discussed. There are electron trap of E_T =0.34 eV and hole trap of E_T = 1.13 eV in InP: Fe under the strong light and low temperature. The location of the OTCS peak of electron trap (E_T = 0.34 eV) moves towards the direction of high temperaturer, when the light intensity was increased, E_T is different under different light intensity. It is corrected in terms of theory that the stuff ratio of the deep energy level is affected by the light intensity. The experiments show that the error is decreased greatly with the correction.
文摘Off-center impurity effects in a spherical quantum dot are theoretically studied by degenerate perturbationmethod in strong confinement.The energy levels and binding energies are computed for the typical GaAs material asfunction of the donor position.The numerical results show the quantum size effect.We note that the energy levels andbinding energies are not only related to the position of donor and the strength of confinement,but also related to thefold of degenerate states.We can see obviously that gaps will appear among the degenerate states and the splitting ofenergy levels and binding energies will appear as the position of the impurity is shifted away off the center.
基金supported by the Natural Science Foundation of Fujian Province of China (Grant No. A0220001)
文摘In order to better understand the bonding mechanisms of the phosphorus-doped diamond films and the influences of the phosphorus-doped concentration on the diamond lattice integrity and conductivity,we calculate the electronic structures of the phosphorus-doped diamond with different phosphorus concentrations and the density of states in the phosphorus--doped diamond films with a vacant lattice site by the first principle method.The calculation results show the phosphorus atom only affects the bonds of a few atoms in its vicinity,and the conductivity increases as the doped concentration increases.Also in the diamond lattice with a total number of 64 atoms and introducing a vacancy into the non-nearest neighbor lattice site of a phosphorus atom,we have found that both the injuries of the phosphorus-doped diamond films and the N-type electron conductivity of diamond films could be improved.
基金Project supported by the National High Technology Research and Development Program of China(No.2012AA091102)the National Natural Science Foundation of Xinjiang(No.2010211B24)
文摘Copper doped n-type single-crystal silicon materials are prepared by a high temperature diffusion process. The electrical and thermal-sensitive characteristic of materials is investigated under different experimental conditions. The results show that the maximum resistivity of 46.2 Ω·cm is obtained when the sample is treated at 1200℃ for 2 h with the surface concentration of the copper dopant source being 1.83×10^7mol/cm^2. The copper doped n-type silicon material presents a negative temperature-sensitive characteristic and the B values are about 3010–4130 K.
基金supported by the National High Technology Research and Development Program of China(No.2006AA03Z434)
文摘Silicon materials compensated by deep level impurities such as nickel and gold have negative temperature coefficient (NTC) characteristics. In this work, n-type silicon wafers are smeared by nickel chloride ethanol solution and gold chloric acid ethanol solution, and subsequently put in the opening environment to heat. The electrical resistance and B-value of the thermistors made by this silicon material are measured and analyzed. When the silicon surface concentration of gold atoms is 2 × 10-6 mol/cm2, the uniformity of the single-crystal silicon material is optimal. When the diffusion temperature is between 900 and 1000 ℃, a material with high B-value and low electrical resistivity is obtained. The B-T and R-T change laws calculated by the theory of semiconductor deep level energy are basically consistent with the experimental results.