期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Study of Near-and Super-Critical Fluids Using Diamond Anvil Cell and in-Situ FT-IR Spectroscopy 被引量:12
1
作者 HU Shumin ZHANG Ronghua ZHANG Xuetong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期412-417,共6页
The phase relation and solution structure of water and NaCl aqueous solution have been observed and examined by using the hydrothermal diamond anvil cell (HDAC) at elevated temperatures and pressures and the in situ F... The phase relation and solution structure of water and NaCl aqueous solution have been observed and examined by using the hydrothermal diamond anvil cell (HDAC) at elevated temperatures and pressures and the in situ FT-IR spectroscopy. The temperature of observations ranges from 25 to 850°C and the pressure up to 10 or 30 kb. At first, we observed the phase transition process from halite+liquid+vapour (H+L+V) to L+H, then to L (or supercritical fluid, SCF), and another path: H+L+V→L+V→L (or SCF) in heating process. By means of the visual microscope, the authors found that in the L+V immiscibility field L+V exhibits an ordered structure, i.e. a large visual cluster of solvent around ions. The liquid phase is manifested by vapour bubbles. When phase transitions are observed, the authors examined their infrared spectra by using the FT-IR microscopy simultaneously. In the case of the phase transition from liquid (L) to liquid + vapor (L+V) immisciblity field of NaCl solutions, a sudden change (strong frequency shift) of infrared spectra of the aqueous solution is observed near the critical temperature of water as the temperature is raised from 25 to 650°C. The frequency of the maximum intensity of OH symmetric and asymmetric vibration varies with respect to temperature. The sharp peak of the OH stretching vibration of the maximum intensity appears in an interval from 300 to 400°C. It is indicated that the hydrogen bonding network is weakened and broken at last near the critical point of water, which causes the aqueous solution to become more associated. Besides, a pressure indicator (a mineral or compound) was introduced to the HDAC. 展开更多
关键词 diamond anvil cell critical state in situ ir microscopy
下载PDF
A NOVEL OPTICALLY TRANSPARENT THIN LAYER ELECTRODE FOR IN SITU IR SPECTROELECTROCHEMISTRY
2
作者 YiJinXIAO Han Xi YANG ChuanSin CHA (Dept.of Chemistry,Wuhan Univ.,430072)Zi Gang FENG Hua TONG (Anal.Center,Wuhan Univ.) 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第4期329-330,共2页
A novel design of IR OTTLE is shown to have sufficient sensitivity and experi- mental simplicity for obtaining IR spectra of the species generated during electrochemical oxidation-reduction.
关键词 ir A NOVEL OPTICALLY TRANSPARENT THin LAYER ELECTRODE FOR in situ ir SPECTROELECTROCHEMISTRY
下载PDF
Photocatalytic decomposition of acrylonitrile with N–F codoped TiO_2/SiO_2 under simulant solar light irradiation 被引量:1
3
作者 Dandan Pang Lu Qiu +2 位作者 Yunteng Wang Rongshu Zhu Feng Ouyang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第7期169-178,共10页
The solid acid catalyst, N-F codoped Ti O2/Si O2 composite oxide was prepared by a sol-gel method using NH4 F as nitrogen and fluorine source. The prepared materials were characterized by X-ray diffraction(XRD), sca... The solid acid catalyst, N-F codoped Ti O2/Si O2 composite oxide was prepared by a sol-gel method using NH4 F as nitrogen and fluorine source. The prepared materials were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), UV-Visible diffuse reflectance spectroscopy(UV-Vis),ammonia adsorption and temperature-programmed desorption(NH3-TPD), in situ Fourier transform infrared spectroscopy(FT-IR) and N2 physical adsorption isotherm. The photocatalytic activity of the catalyst for acrylonitrile degradation was investigated under simulant solar irradiation. The results showed that strong Lewis and Brnsted acid sites appear on the surface of the sample after N-F doping. Systematic investigation showed that the highest photocatalytic activity for acrylonitrile degradation was obtained for samples calcined at 450°C with molar ratio(NH4F to Ti) of 0.8. The degradation ratio of 71.5% was achieved with the prepared catalyst after 6-min irradiation, demonstrating the effectiveness of photocatalytic degradation of acrylonitrile with N-F codoped Ti O2/Si O2 composite oxide. The photocatalyst is promising for application under solar light irradiation.Moreover, the intermediates generated after irradiation were verified by gas chromatography-mass spectrometry(GC-MS) analysis and UV-Vis spectroscopy to be simple organic acids with lower toxicity, and the degradation pathway was also proposed for acrylonitrile degradation with the prepared catalyst. 展开更多
关键词 Photocatalytic activity ACRYLONITRILE in situ ir N-F codoping
原文传递
Spin polarization strategy to deploy proton resource over atomic-level metal sites for highly selective CO_(2) electrolysis
4
作者 Yingjie Zhao Xinyue Wang +5 位作者 Xiahan Sang Sixing Zheng Bin Yang Lecheng Lei Yang Hou Zhongjian Li 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2022年第12期1772-1781,共10页
Unlocking of the extremely inert C=O bond during electrochemical CO_(2) reduction demands subtle regulation on a key“resource”,protons,necessary for intermediate conversion but also readily trapped in water splittin... Unlocking of the extremely inert C=O bond during electrochemical CO_(2) reduction demands subtle regulation on a key“resource”,protons,necessary for intermediate conversion but also readily trapped in water splitting,which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task.Incorporation of extra functional units should be viable.Herein,a proton deployment strategy is demonstrated via“atomic and nanostructured iron(A/N-Fe)pairs”,comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets,to boost the critical protonation steps.The as-designed catalyst displays a broad window(300 mV)for CO selectivity>90%(98%maximum),even outperforming numerous cutting-edge M–N–C systems.The well-placed control of proton dynamics by A/N-Fe can promote*COOH/*CO formation and simultaneously suppress H2 evolution,benefiting from the magnetic-proximity-induced exchange splitting(spin polarization)that properly adjusts energy levels of the Fe sites’d-shells,and further those of the adsorbed intermediates’antibonding molecular orbitals. 展开更多
关键词 CO_(2)electrolysis/single-atom catalysts/spin polarization/proton dynamics/in situ ir spectroscopy/kinetic isotope effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部