期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Explanation of Relation between Wave Function and Probability Density Based on Quantum Mechanics in Phase Space
1
作者 Chol Jong Jin-Sim Kim +1 位作者 Shin-Hyok Jon Son-Il Jo 《World Journal of Mechanics》 2023年第1期20-72,共53页
The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamenta... The main problem of quantum mechanics is to elucidate why the probability density is the modulus square of wave function. For the purpose of solving this problem, we explored the possibility of deducing the fundamental equation of quantum mechanics by starting with the probability density. To do so, it is necessary to formulate a new theory of quantum mechanics distinguished from the previous ones. Our investigation shows that it is possible to construct quantum mechanics in phase space as an alternative autonomous formulation and such a possibility enables us to study quantum mechanics by starting with the probability density rather than the wave function. This direction of research is contrary to configuration-space formulation of quantum mechanics starting with the wave function. Our work leads to a full understanding of the wave function as the both mathematically and physically sufficient representation of quantum-mechanical state which supplements information on quantum state given solely by the probability density with phase information on quantum state. The final result of our work is that quantum mechanics in phase space satisfactorily elucidates the relation between the wave function and the probability density by using the consistent procedure starting with the probability density, thus corroborating the ontological interpretation of the wave function and withdrawing a main assumption of quantum mechanics. 展开更多
关键词 Quantum Ensemble Theory Quantum Mechanics in phase space Wave Function Probability Density Schrödinger Equation
下载PDF
The effect of forced oscillations on the kinetics of wave drift in an inhomogeneous plasma
2
作者 V I EROFEEV 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第12期8-19,共12页
The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the ... The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios. 展开更多
关键词 informativeness of plasma kinetic scenario the ensemble method asymptotic convergence of perturbation theories correlation analysis of plasma kinetics kinetic equation of wave drift in phase space
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部