The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on ...The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.展开更多
The unbalanced impedance of the asymmetric 3-phase wind power permanent magnet synchronous generator(PMSG)compensated by external circuits in series with the 3-phase windings is investigated in this paper.The asymmetr...The unbalanced impedance of the asymmetric 3-phase wind power permanent magnet synchronous generator(PMSG)compensated by external circuits in series with the 3-phase windings is investigated in this paper.The asymmetric impedance includes the unbalanced resistances,unbalanced self-inductances,and unbalanced mutual inductances.From the perspective of the second harmonic inductances in dq-frame and from the perspective of the second harmonic power,it is theoretically demonstrated that the original asymmetric 3-phase system with asymmetric impedance can be modified to a balanced system by external circuits consisting of resistances and inductances.Therefore,the second harmonic power and DC bus voltage due to the asymmetries can be suppressed naturally without any software modifications.The feasibility of this compensation method is validated by elaborate experiments at different speeds and under different load condition,although the effectiveness might be slightly affected by the non-linearity of the compensation inductance in practice.展开更多
Fabrication technology of the Yb3+:Er3+ co-doped glass samples is introduced. Photolummescence (PL) characteristics of a single sample were experimentally investigated. The PL peak intensities of two samples in series...Fabrication technology of the Yb3+:Er3+ co-doped glass samples is introduced. Photolummescence (PL) characteristics of a single sample were experimentally investigated. The PL peak intensities of two samples in series were measured and discussed. The results show that the PL peak intensities of two samples in series depend on pump manners and arrangement of the samples. The better amplification ability can be obtained by two samples in series doped with low-concentration ytterbium instead of a single sample doped with high-concentration ytterbium.展开更多
A five-site comprehensive mathematical model was developed to simulate the steady-state behavior of industrial slurry polymerization of ethylene in multistage continuous stirred tank reactors. More specifically, the e...A five-site comprehensive mathematical model was developed to simulate the steady-state behavior of industrial slurry polymerization of ethylene in multistage continuous stirred tank reactors. More specifically, the effects of various operating conditions (i.e., inflow rates of catalyst, hydrogen and comonomer) on the molecular structure and properties of polyethylene (i.e.,Mw,Mn, polydispersity index (IPD), melt index, density, etc.) are fully assessed. It is shown that the proposed comprehensive model is capable of simulating the steady-state operation of an industrial slurry stirred tank reactor series. It is demonstrated that changing the catalyst flow rate, changes simultaneously the mean residence-time in both reactors, which plays a significant role on the establishment of polyethylene architecture properties such as molecular mass and IPD. The melt index and density of polyethylene are mainly controlled by hydrogen and comonomer concentration, respectively.展开更多
The silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent neutron detectors. We have fabricated the thin-film-coated single Si-PIN neutron detectors and stacke...The silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent neutron detectors. We have fabricated the thin-film-coated single Si-PIN neutron detectors and stacked ones coupled in series and parallel in this work. The stacked detectors show the advantage of improving the detection efficiency of neutron detecting, which essentially attributes to the increase of the effective detection area. It is shown that the stacked detector in series has more superior performance than the parallel one. This work provides a feasible method to develop solid-state semiconductor neutron detectors with high neutron detection efficiency and high response speed.展开更多
The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie'...The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie's cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.展开更多
The International Space Station(ISS) employs catalytic wet oxidation carried out in a Volatile Reactor Assembly (VRA) for water recycling. Previous earth gravity experiments show that the VRA is very effective at ...The International Space Station(ISS) employs catalytic wet oxidation carried out in a Volatile Reactor Assembly (VRA) for water recycling. Previous earth gravity experiments show that the VRA is very effective at removing polar, low molecular weight organics. To compare the reactor performance under micro-gravity and Earth gravity conditions, a tracer study was performed on a space shuttle in 1999 by using 0.2% potassium carbonate as the chemical tracer. In this paper, the experimental data were analyzed and it is indicated that the reactor can be considered as a plug flow one under both micro-gravity and earth gravity experimental conditions. It has also been proved that dispersion is not important in the VRA reactor under the experimental conditions. Tracer retardation was observed in the experiments and it is most likely caused by catalyst adsorption. It is concluded that the following reasons may also have influence on the retardation of mean residence time : (1) the liquid can be held by appurtenances, which will retard the mean residence time; (2) the pores can hold the tracer, which can also retard the mean residence time.展开更多
Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru cata...Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru catalyst in series for ammonia synthesis were investigated.The activity tests were also performed on the single Ru and Fe catalysts as comparison.Results showed that the activity of the Ru catalyst for ammonia synthesis was higher than that of the iron catalyst by 33.5%-37.6% under the reaction conditions:375-400 °C,10 MPa,10000 h-1,H2︰N2 3,and the Ru catalyst also had better thermal stability when treated at 475 °C for 20 h.The outlet ammonia concentration using Fe-Ru catalyst was increased by 45.6%-63.5% than that of the single-iron catalyst at low tem-perature (375-400 °C),and the outlet ammonia concentration increased with increasing Ru catalyst loading.展开更多
Currently, most rivers worldwide have been intensively impounded. River damming becomes a big problem, not only in inducing the physical obstruction between upstream and downstream, but also in destroying the natural ...Currently, most rivers worldwide have been intensively impounded. River damming becomes a big problem, not only in inducing the physical obstruction between upstream and downstream, but also in destroying the natural continuity of river. But the discontinuity of water quality was often neglected, which presents a challenge to traditional river geochemistry research. To understand the changes in basic chemistry of water upstream and downstream of the dam, we investigated the Miaotiao River reservoirs in series in the Wujiang River Basin, and the Hongjiadu, Dongfeng Reservoir on the upper reaches of the Wujiang River. Chemical weathering rates were calculated using the water chemistry data of the reservoir surface and downstream of the dam, in each reservoir, respectively. The results showed that the difference between the chemical weathering rates calculated from reservoir surface water and water downstream of the dam was greater in reservoirs with a longer water retention time. In Hongjiadu Reservoir with the longest water retention time among the studied reservoirs, this difference reaches 9%. As a result, the influence of fiver damming, especially the influence of reservoirs in series, should be taken into account when calculating the chemical weathering rate of a fiver basin.展开更多
This report describes the procedure of a case in which the skin paddle of the free fibula flap derived its supply solely from a soleal musculocutaneous perforator originating from the posterior tibial system.In contra...This report describes the procedure of a case in which the skin paddle of the free fibula flap derived its supply solely from a soleal musculocutaneous perforator originating from the posterior tibial system.In contrast,the osteo-muscular component was supplied by the peroneal vascular system.We harvested the skin paddle with its vascular supply from the posterior tibial artery separately,and the osteo-muscular fibula was harvested with its supply from peroneal vessels.In this way,we avoided violation of the second donor site for the skin paddle.In addition,we used the distal end of peroneal vessels to salvage our skin paddle instead of sacrificing another set of neck vessels for anastomosis.This technique may also be utilised in cases where the neck vessels may not be available due to previous surgeries,radiation therapy,or decision by the surgery team to not sacrifice two sets of neck vessels for anastomosis.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 51074012, 51204009)
文摘The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the 'fish-hook' effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the 'fish-hook' effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.
文摘The unbalanced impedance of the asymmetric 3-phase wind power permanent magnet synchronous generator(PMSG)compensated by external circuits in series with the 3-phase windings is investigated in this paper.The asymmetric impedance includes the unbalanced resistances,unbalanced self-inductances,and unbalanced mutual inductances.From the perspective of the second harmonic inductances in dq-frame and from the perspective of the second harmonic power,it is theoretically demonstrated that the original asymmetric 3-phase system with asymmetric impedance can be modified to a balanced system by external circuits consisting of resistances and inductances.Therefore,the second harmonic power and DC bus voltage due to the asymmetries can be suppressed naturally without any software modifications.The feasibility of this compensation method is validated by elaborate experiments at different speeds and under different load condition,although the effectiveness might be slightly affected by the non-linearity of the compensation inductance in practice.
基金This work was supported by the National Natural Science Foundation of China(No.6988701),Science and Technology Commission of Liaoning Province (No.20022110) Educational Commission of Liaoning Province(No.202123198)
文摘Fabrication technology of the Yb3+:Er3+ co-doped glass samples is introduced. Photolummescence (PL) characteristics of a single sample were experimentally investigated. The PL peak intensities of two samples in series were measured and discussed. The results show that the PL peak intensities of two samples in series depend on pump manners and arrangement of the samples. The better amplification ability can be obtained by two samples in series doped with low-concentration ytterbium instead of a single sample doped with high-concentration ytterbium.
文摘A five-site comprehensive mathematical model was developed to simulate the steady-state behavior of industrial slurry polymerization of ethylene in multistage continuous stirred tank reactors. More specifically, the effects of various operating conditions (i.e., inflow rates of catalyst, hydrogen and comonomer) on the molecular structure and properties of polyethylene (i.e.,Mw,Mn, polydispersity index (IPD), melt index, density, etc.) are fully assessed. It is shown that the proposed comprehensive model is capable of simulating the steady-state operation of an industrial slurry stirred tank reactor series. It is demonstrated that changing the catalyst flow rate, changes simultaneously the mean residence-time in both reactors, which plays a significant role on the establishment of polyethylene architecture properties such as molecular mass and IPD. The melt index and density of polyethylene are mainly controlled by hydrogen and comonomer concentration, respectively.
文摘The silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent neutron detectors. We have fabricated the thin-film-coated single Si-PIN neutron detectors and stacked ones coupled in series and parallel in this work. The stacked detectors show the advantage of improving the detection efficiency of neutron detecting, which essentially attributes to the increase of the effective detection area. It is shown that the stacked detector in series has more superior performance than the parallel one. This work provides a feasible method to develop solid-state semiconductor neutron detectors with high neutron detection efficiency and high response speed.
文摘The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie's cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.
文摘The International Space Station(ISS) employs catalytic wet oxidation carried out in a Volatile Reactor Assembly (VRA) for water recycling. Previous earth gravity experiments show that the VRA is very effective at removing polar, low molecular weight organics. To compare the reactor performance under micro-gravity and Earth gravity conditions, a tracer study was performed on a space shuttle in 1999 by using 0.2% potassium carbonate as the chemical tracer. In this paper, the experimental data were analyzed and it is indicated that the reactor can be considered as a plug flow one under both micro-gravity and earth gravity experimental conditions. It has also been proved that dispersion is not important in the VRA reactor under the experimental conditions. Tracer retardation was observed in the experiments and it is most likely caused by catalyst adsorption. It is concluded that the following reasons may also have influence on the retardation of mean residence time : (1) the liquid can be held by appurtenances, which will retard the mean residence time; (2) the pores can hold the tracer, which can also retard the mean residence time.
基金Supported by the National Natural Science Foundation of China(20803064) the Natural Science Foundation of Zhejiang Province(Y409034)
文摘Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru catalyst in series for ammonia synthesis were investigated.The activity tests were also performed on the single Ru and Fe catalysts as comparison.Results showed that the activity of the Ru catalyst for ammonia synthesis was higher than that of the iron catalyst by 33.5%-37.6% under the reaction conditions:375-400 °C,10 MPa,10000 h-1,H2︰N2 3,and the Ru catalyst also had better thermal stability when treated at 475 °C for 20 h.The outlet ammonia concentration using Fe-Ru catalyst was increased by 45.6%-63.5% than that of the single-iron catalyst at low tem-perature (375-400 °C),and the outlet ammonia concentration increased with increasing Ru catalyst loading.
基金The authors thank Ituihui Li, Zhiwei Hart, Chipeng Zhang, Yan Yang and Ganrong Li for their careful assistances in field sampling. This research was funded by the National Natural Science Foundation of China (Grant Nos. 41273128 and 40873066), and the Shanghai Education Committee Fund (12YZ017 ).
文摘Currently, most rivers worldwide have been intensively impounded. River damming becomes a big problem, not only in inducing the physical obstruction between upstream and downstream, but also in destroying the natural continuity of river. But the discontinuity of water quality was often neglected, which presents a challenge to traditional river geochemistry research. To understand the changes in basic chemistry of water upstream and downstream of the dam, we investigated the Miaotiao River reservoirs in series in the Wujiang River Basin, and the Hongjiadu, Dongfeng Reservoir on the upper reaches of the Wujiang River. Chemical weathering rates were calculated using the water chemistry data of the reservoir surface and downstream of the dam, in each reservoir, respectively. The results showed that the difference between the chemical weathering rates calculated from reservoir surface water and water downstream of the dam was greater in reservoirs with a longer water retention time. In Hongjiadu Reservoir with the longest water retention time among the studied reservoirs, this difference reaches 9%. As a result, the influence of fiver damming, especially the influence of reservoirs in series, should be taken into account when calculating the chemical weathering rate of a fiver basin.
文摘This report describes the procedure of a case in which the skin paddle of the free fibula flap derived its supply solely from a soleal musculocutaneous perforator originating from the posterior tibial system.In contrast,the osteo-muscular component was supplied by the peroneal vascular system.We harvested the skin paddle with its vascular supply from the posterior tibial artery separately,and the osteo-muscular fibula was harvested with its supply from peroneal vessels.In this way,we avoided violation of the second donor site for the skin paddle.In addition,we used the distal end of peroneal vessels to salvage our skin paddle instead of sacrificing another set of neck vessels for anastomosis.This technique may also be utilised in cases where the neck vessels may not be available due to previous surgeries,radiation therapy,or decision by the surgery team to not sacrifice two sets of neck vessels for anastomosis.