期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Fracture characteristics of notched investment cast TiAl alloy through in situ SEM observation 被引量:5
1
作者 陈艳飞 郑顺奇 +4 位作者 涂江平 肖树龙 田竟 徐丽娟 陈玉勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2389-2394,共6页
TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack... TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack propagation of a notched investment cast TiAl specimens in tension under incremental loading conditions. The whole process of crack initiation, propagation and failure during tensile deformation was observed and characterized. The results show that the fracture mechanism was sensitive to not only the microcracks near the notched area but also lamellar orientation to loading axis. The high tensile stress leads to the new microcracks nucleate along lamellar interfaces of grains with favorable orientation when local stress intensity reaches the toughness threshold of the material. Thus, both plasticity and high tensile stress are required to cause notched TiAl failure. 展开更多
关键词 TiAl alloys investment cast fracture characteristics in situ sem observation
下载PDF
Monitoring the morphology evolution of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)during high-temperature solid state synthesis via in situ SEM 被引量:1
2
作者 Liang Tang Xiaopeng Cheng +4 位作者 Rui Wu Tianci Cao Junxia Lu Yuefei Zhang Ze Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期9-15,I0001,共8页
The particle morphology determined by the sintering process is the director factor affecting the electrochemical performance of Ni-rich NMC cathode materials.To prepare the ideal NMC particles,it is of great significa... The particle morphology determined by the sintering process is the director factor affecting the electrochemical performance of Ni-rich NMC cathode materials.To prepare the ideal NMC particles,it is of great significance to understand the morphological changes during sintering process.In this work,the morphology evolution of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)synthesis at temperature ranging from 300–1080℃were observed by in situ SEM.The uniform mixture of spherical Ni_(0.8)Mn_(0.1)Co_(0.1)(OH)_(2)precursor and lithium sources(LiOH)was employed by high temperature solid-state process inside the SEM,which enables us to observe morphology changes in real time.The results show that synthetic reaction of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)usually includes three processes:the raw materials’dehydration,oxidation,and combination,accompanied by a significant reduction in particle size,which is important reference to control the synthesis temperature.As heating temperature rise,the morphology of mixture also changed from flake to brick-shaped.However,Ni nanoparticle formation is apparent at higher temperature~1000℃,suggesting a structural transformation from a layered to a rock-salt-like structure.Combining the in-situ observed changes in size and morphology,and with the premise of ensuring the morphology change from flakes to bricks,reducing the sintering temperature as much as possible to prevent excessive reduction in particle size and layered to a rock-salt structure transformation is recommended for prepare ideal NMC particles. 展开更多
关键词 Lithium-ion battery NMC cathode in situ sem High temperature imaging Particle morphology
下载PDF
Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing 被引量:5
3
作者 Xiaowei Liu Yong Liu +2 位作者 Bin Jin Yang Lu Jian Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期224-230,共7页
Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively... Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys' mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of ~10 μm('coarse-grain sample') and ~5 μm('fine-grain sample'), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample' was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples'.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution. 展开更多
关键词 Surface mechanical attrition treatment(SMAT) Mg alloy Mechanical property in situ sem Microstructure characterization
原文传递
Recent advances in the mechanics of 2D materials
4
作者 Guorui Wang Hongyu Hou +6 位作者 Yunfeng Yan Ritesh Jagatramka Amir Shirsalimian Yafei Wang Binzhao Li Matthew Daly Changhong Cao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期31-86,共56页
The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nan... The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nanocomposites,and multifunctional coatings,among others.At the center of this application space,mechanical properties play a vital role in materials design,manufacturing,integration and performance.The emergence of 2D materials has also sparked broad scientific inquiry,with new understanding of mechanical interactions between 2D structures and interfaces being of great interest to the community.Building on the dramatic expansion of recent research activities,here we review significant advances in the understanding of the elastic properties,in-plane failures,fatigue performance,interfacial shear/friction,and adhesion behavior of 2D materials.In this article,special emphasis is placed on some new 2D materials,novel characterization techniques and computational methods,as well as insights into deformation and failure mechanisms.A deep understanding of the intrinsic and extrinsic factors that govern 2D material mechanics is further provided,in the hopes that the community may draw design strategies for structural and interfacial engineering of 2D material systems.We end this review article with a discussion of our perspective on the state of the field and outlook on areas for future research directions. 展开更多
关键词 2D materials mechanical property interfacial mechanics atomic force microscopy(AFM) in situ electron microscopy(sem and TEM)
下载PDF
Compressive elastic behavior of single-crystalline 4H-silicon carbide(SiC) nanopillars 被引量:1
5
作者 FAN SuFeng LI XiaoCui +1 位作者 FAN Rong LU Yang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第1期37-43,共7页
As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques.... As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques. Practical applications of SiCbased devices largely depend on their mechanical performance and reliability at the micro-and nanoscales. In this paper, singlecrystal [0001]-oriented 4H-SiC nanopillars with the diameter ranging from ~200 to 700 nm were microfabricated and then characterized by in situ nanomechanical testing under SEM/TEM at room temperature. Loading-unloading compression tests were performed, and large, fully reversible elastic strain up to ~6.2% was found in nanosized pillars. Brittle fracture still occurred when the max strain reached ~7%, with corresponding compressive strength above 30 GPa, while in situ TEM observation showed few dislocations activated during compression along the [0001] direction. Besides robust microelectromechanical system(MEMS), flexible device and nanocomposite applications, the obtained large elasticity in [0001]-oriented 4H-SiC nanopillars can offer a fertile opportunity to modulate their electron mobility and bandgap structure by nanomechanical straining,the so called "elastic strain engineering", for novel electronic and optoelectronic applications. 展开更多
关键词 silicon carbide elastic deformation compressive behavior in situ sem/TEM elastic strain engineering
原文传递
Statistical in situ scanning electron microscopy investigation on the failure of oxide scales
6
作者 Jin Zhou Yongqing Chen +5 位作者 Yuan Ma Xiaoxin Zhang Xing Gong Yang He Qingzhi Yan Lijie Qiao 《Materials Genome Engineering Advances》 2023年第1期146-151,共6页
Oxide scales play a pivotal role in obstructing surface chemical and electrochemical reactions,hence hindering chemo-mechanical effects such as liquid metal embrittlement of steels.Therefore,the critical conditions an... Oxide scales play a pivotal role in obstructing surface chemical and electrochemical reactions,hence hindering chemo-mechanical effects such as liquid metal embrittlement of steels.Therefore,the critical conditions and failure mechanism of the oxide film are of major interest in the safe service of steels.Though in situ microscopic methods may directly visualize the failure mechanism,they are often challenged by the lack of statistically reliable evaluation of the critical conditions.Here,by combining in situ scanning electron microscopy with a tapered specimen tensile test in a single experiment,we uniquely achieve a mechanistic study with statistically reliable quantification of the critical strains for each step of the dynamic process of film rupture.This is demonstrated with the oxide films formed on a ferrite-martensite steel in liquid lead-bismuth eutectic alloy at elevated temperatures,with in situ results falling right into the predictions of the statistical analysis.Explicitly,the integrated experimental methodology may facilitate the materials genome engineering of steels with superior service performance. 展开更多
关键词 failure mechanism high-throughput method in situ sem oxide scales
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部