TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack...TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack propagation of a notched investment cast TiAl specimens in tension under incremental loading conditions. The whole process of crack initiation, propagation and failure during tensile deformation was observed and characterized. The results show that the fracture mechanism was sensitive to not only the microcracks near the notched area but also lamellar orientation to loading axis. The high tensile stress leads to the new microcracks nucleate along lamellar interfaces of grains with favorable orientation when local stress intensity reaches the toughness threshold of the material. Thus, both plasticity and high tensile stress are required to cause notched TiAl failure.展开更多
The particle morphology determined by the sintering process is the director factor affecting the electrochemical performance of Ni-rich NMC cathode materials.To prepare the ideal NMC particles,it is of great significa...The particle morphology determined by the sintering process is the director factor affecting the electrochemical performance of Ni-rich NMC cathode materials.To prepare the ideal NMC particles,it is of great significance to understand the morphological changes during sintering process.In this work,the morphology evolution of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)synthesis at temperature ranging from 300–1080℃were observed by in situ SEM.The uniform mixture of spherical Ni_(0.8)Mn_(0.1)Co_(0.1)(OH)_(2)precursor and lithium sources(LiOH)was employed by high temperature solid-state process inside the SEM,which enables us to observe morphology changes in real time.The results show that synthetic reaction of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)usually includes three processes:the raw materials’dehydration,oxidation,and combination,accompanied by a significant reduction in particle size,which is important reference to control the synthesis temperature.As heating temperature rise,the morphology of mixture also changed from flake to brick-shaped.However,Ni nanoparticle formation is apparent at higher temperature~1000℃,suggesting a structural transformation from a layered to a rock-salt-like structure.Combining the in-situ observed changes in size and morphology,and with the premise of ensuring the morphology change from flakes to bricks,reducing the sintering temperature as much as possible to prevent excessive reduction in particle size and layered to a rock-salt structure transformation is recommended for prepare ideal NMC particles.展开更多
Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively...Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys' mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of ~10 μm('coarse-grain sample') and ~5 μm('fine-grain sample'), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample' was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples'.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution.展开更多
The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nan...The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nanocomposites,and multifunctional coatings,among others.At the center of this application space,mechanical properties play a vital role in materials design,manufacturing,integration and performance.The emergence of 2D materials has also sparked broad scientific inquiry,with new understanding of mechanical interactions between 2D structures and interfaces being of great interest to the community.Building on the dramatic expansion of recent research activities,here we review significant advances in the understanding of the elastic properties,in-plane failures,fatigue performance,interfacial shear/friction,and adhesion behavior of 2D materials.In this article,special emphasis is placed on some new 2D materials,novel characterization techniques and computational methods,as well as insights into deformation and failure mechanisms.A deep understanding of the intrinsic and extrinsic factors that govern 2D material mechanics is further provided,in the hopes that the community may draw design strategies for structural and interfacial engineering of 2D material systems.We end this review article with a discussion of our perspective on the state of the field and outlook on areas for future research directions.展开更多
As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques....As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques. Practical applications of SiCbased devices largely depend on their mechanical performance and reliability at the micro-and nanoscales. In this paper, singlecrystal [0001]-oriented 4H-SiC nanopillars with the diameter ranging from ~200 to 700 nm were microfabricated and then characterized by in situ nanomechanical testing under SEM/TEM at room temperature. Loading-unloading compression tests were performed, and large, fully reversible elastic strain up to ~6.2% was found in nanosized pillars. Brittle fracture still occurred when the max strain reached ~7%, with corresponding compressive strength above 30 GPa, while in situ TEM observation showed few dislocations activated during compression along the [0001] direction. Besides robust microelectromechanical system(MEMS), flexible device and nanocomposite applications, the obtained large elasticity in [0001]-oriented 4H-SiC nanopillars can offer a fertile opportunity to modulate their electron mobility and bandgap structure by nanomechanical straining,the so called "elastic strain engineering", for novel electronic and optoelectronic applications.展开更多
Oxide scales play a pivotal role in obstructing surface chemical and electrochemical reactions,hence hindering chemo-mechanical effects such as liquid metal embrittlement of steels.Therefore,the critical conditions an...Oxide scales play a pivotal role in obstructing surface chemical and electrochemical reactions,hence hindering chemo-mechanical effects such as liquid metal embrittlement of steels.Therefore,the critical conditions and failure mechanism of the oxide film are of major interest in the safe service of steels.Though in situ microscopic methods may directly visualize the failure mechanism,they are often challenged by the lack of statistically reliable evaluation of the critical conditions.Here,by combining in situ scanning electron microscopy with a tapered specimen tensile test in a single experiment,we uniquely achieve a mechanistic study with statistically reliable quantification of the critical strains for each step of the dynamic process of film rupture.This is demonstrated with the oxide films formed on a ferrite-martensite steel in liquid lead-bismuth eutectic alloy at elevated temperatures,with in situ results falling right into the predictions of the statistical analysis.Explicitly,the integrated experimental methodology may facilitate the materials genome engineering of steels with superior service performance.展开更多
基金Project(51001040)supported by the National Natural Science Foundation of ChinaProject(200802130014)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(HIT.NSRIF.2010116)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(HITQNJS 2009022)supported by Development Program for Outstanding Young Teachers in Harbin Institute of Technology
文摘TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack propagation of a notched investment cast TiAl specimens in tension under incremental loading conditions. The whole process of crack initiation, propagation and failure during tensile deformation was observed and characterized. The results show that the fracture mechanism was sensitive to not only the microcracks near the notched area but also lamellar orientation to loading axis. The high tensile stress leads to the new microcracks nucleate along lamellar interfaces of grains with favorable orientation when local stress intensity reaches the toughness threshold of the material. Thus, both plasticity and high tensile stress are required to cause notched TiAl failure.
基金supported by the funding from Beijing municipal high level innovative team building program(IDHT20190503)the National Natural Science Foundation of China(22075006)。
文摘The particle morphology determined by the sintering process is the director factor affecting the electrochemical performance of Ni-rich NMC cathode materials.To prepare the ideal NMC particles,it is of great significance to understand the morphological changes during sintering process.In this work,the morphology evolution of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)synthesis at temperature ranging from 300–1080℃were observed by in situ SEM.The uniform mixture of spherical Ni_(0.8)Mn_(0.1)Co_(0.1)(OH)_(2)precursor and lithium sources(LiOH)was employed by high temperature solid-state process inside the SEM,which enables us to observe morphology changes in real time.The results show that synthetic reaction of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)usually includes three processes:the raw materials’dehydration,oxidation,and combination,accompanied by a significant reduction in particle size,which is important reference to control the synthesis temperature.As heating temperature rise,the morphology of mixture also changed from flake to brick-shaped.However,Ni nanoparticle formation is apparent at higher temperature~1000℃,suggesting a structural transformation from a layered to a rock-salt-like structure.Combining the in-situ observed changes in size and morphology,and with the premise of ensuring the morphology change from flakes to bricks,reducing the sintering temperature as much as possible to prevent excessive reduction in particle size and layered to a rock-salt structure transformation is recommended for prepare ideal NMC particles.
基金supported by the National Key Basic Research Program (Grant No. 2012CB932203)the National Natural Science Foundation of China (Grant No. 51301147)+1 种基金the funding support from City University of Hong Kong (Grant Nos. 9610288 and 9680108)the funding support from the National Natural Science Foundation of China (Grant No. 51464234)
文摘Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys' mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of ~10 μm('coarse-grain sample') and ~5 μm('fine-grain sample'), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample' was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples'.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution.
基金the Natural Sciences and Engineering Research Council(NSERC)of CanadaNational Natural Science Foundation of China(Grant Nos.12202430,12241202)+1 种基金USTC Research Funds of the Double First-Class Initiative(Grant No.YD2090002011)the China Scholarship Council。
文摘The exceptional physical properties and unique layered structure of two-dimensional(2D)materials have made this class of materials great candidates for applications in electronics,energy conversion/storage devices,nanocomposites,and multifunctional coatings,among others.At the center of this application space,mechanical properties play a vital role in materials design,manufacturing,integration and performance.The emergence of 2D materials has also sparked broad scientific inquiry,with new understanding of mechanical interactions between 2D structures and interfaces being of great interest to the community.Building on the dramatic expansion of recent research activities,here we review significant advances in the understanding of the elastic properties,in-plane failures,fatigue performance,interfacial shear/friction,and adhesion behavior of 2D materials.In this article,special emphasis is placed on some new 2D materials,novel characterization techniques and computational methods,as well as insights into deformation and failure mechanisms.A deep understanding of the intrinsic and extrinsic factors that govern 2D material mechanics is further provided,in the hopes that the community may draw design strategies for structural and interfacial engineering of 2D material systems.We end this review article with a discussion of our perspective on the state of the field and outlook on areas for future research directions.
基金supported by Hong Kong Research Grant Council (RGC)(Grant No. U11207416)City University of Hong Kong (Grant No.7005234)National Natural Science Foundation of China under the Excellent Young Scientists Fund (Grant No. 11922215)。
文摘As a wide-bandgap semiconductor, 4H-SiC is an ideal material for high-power and high-frequency devices, and plays an increasingly important role in developing our country’s future electric vehicles and 5G techniques. Practical applications of SiCbased devices largely depend on their mechanical performance and reliability at the micro-and nanoscales. In this paper, singlecrystal [0001]-oriented 4H-SiC nanopillars with the diameter ranging from ~200 to 700 nm were microfabricated and then characterized by in situ nanomechanical testing under SEM/TEM at room temperature. Loading-unloading compression tests were performed, and large, fully reversible elastic strain up to ~6.2% was found in nanosized pillars. Brittle fracture still occurred when the max strain reached ~7%, with corresponding compressive strength above 30 GPa, while in situ TEM observation showed few dislocations activated during compression along the [0001] direction. Besides robust microelectromechanical system(MEMS), flexible device and nanocomposite applications, the obtained large elasticity in [0001]-oriented 4H-SiC nanopillars can offer a fertile opportunity to modulate their electron mobility and bandgap structure by nanomechanical straining,the so called "elastic strain engineering", for novel electronic and optoelectronic applications.
基金support from the National Natural Science Foundation of China(Grant U21B2006,52071022,52271063).
文摘Oxide scales play a pivotal role in obstructing surface chemical and electrochemical reactions,hence hindering chemo-mechanical effects such as liquid metal embrittlement of steels.Therefore,the critical conditions and failure mechanism of the oxide film are of major interest in the safe service of steels.Though in situ microscopic methods may directly visualize the failure mechanism,they are often challenged by the lack of statistically reliable evaluation of the critical conditions.Here,by combining in situ scanning electron microscopy with a tapered specimen tensile test in a single experiment,we uniquely achieve a mechanistic study with statistically reliable quantification of the critical strains for each step of the dynamic process of film rupture.This is demonstrated with the oxide films formed on a ferrite-martensite steel in liquid lead-bismuth eutectic alloy at elevated temperatures,with in situ results falling right into the predictions of the statistical analysis.Explicitly,the integrated experimental methodology may facilitate the materials genome engineering of steels with superior service performance.