Objective:To study the preventive effect of Timosaponin BII(T-BII)-loaded temperature/ion-sensitive nasal in situ hydrogels(ISGs)on Alzheimer's disease(AD),its preparation technology,characteristics and in vivo ef...Objective:To study the preventive effect of Timosaponin BII(T-BII)-loaded temperature/ion-sensitive nasal in situ hydrogels(ISGs)on Alzheimer's disease(AD),its preparation technology,characteristics and in vivo effects were evaluated.Methods:The morphological and rheological properties were evaluated.The preventive effects of T-BII ISG on scopolamine-induced AD in mice were determined with the index of muscarinicreceptor 1(M1)expression and pathological changes.Results:Results revealed that T-BII ISG significantly increased the content of M1 choline receptors in the hippocampus of mice and ameliorated the damage incurred to the hippocampal cornu ammonis 1(CA1)area.Conclusion:T-BII ISGs is a reasonable and convenient method of exerting an obvious preventive effect on mice with AD induced by scopolamine.This,thereby,lays forth a new treatment option for preventing AD.展开更多
Lack of mucoadhesive properties is the major drawback to poloxamer 407(F127)-based in situ hydrogels for mucosal administration. The objective of the present study was to construct a novel mucoadhesive and thermosensi...Lack of mucoadhesive properties is the major drawback to poloxamer 407(F127)-based in situ hydrogels for mucosal administration. The objective of the present study was to construct a novel mucoadhesive and thermosensitive in situ hydrogel drug delivery system based on an aminofunctionalized poloxamer for vaginal administration. First, amino-functionalized poloxamer 407(F127-NH2) was synthesized and characterized with respect to its micellization behavior and interaction with mucin. Then using acetate gossypol(AG) as model drug, AG-loaded F127-NH2-based in situ hydrogels(NFGs) were evaluated with respect to rheology, drug release, ex vivo vaginal mucosal adhesion, in vivo intravaginal retention and local irritation after vaginal administration to healthy female mice. The results show that F127-NH2 is capable of forming a thermosensitive in situ hydrogel with sustained drug release properties. An interaction between positively charged F127-NH2 and negatively charged mucin wasrevealed by changes in the particle size and zeta potential of mucin particles as well as an increase in the complex modulus of NFG caused by mucin. Ex vivo and in vivo fluorescence imaging and quantitative analysis of the amount of AG remaining in mouse vaginal lavage all demonstrated greater intravaginal retention of NFG than that of an unmodified F127-based in situ hydrogel. In conclusion, amino group functionalization confers valuable mucoadhesive properties on poloxamer 407.展开更多
基金This study was funded by the Beijing Natural Science Foundation(7202147).
文摘Objective:To study the preventive effect of Timosaponin BII(T-BII)-loaded temperature/ion-sensitive nasal in situ hydrogels(ISGs)on Alzheimer's disease(AD),its preparation technology,characteristics and in vivo effects were evaluated.Methods:The morphological and rheological properties were evaluated.The preventive effects of T-BII ISG on scopolamine-induced AD in mice were determined with the index of muscarinicreceptor 1(M1)expression and pathological changes.Results:Results revealed that T-BII ISG significantly increased the content of M1 choline receptors in the hippocampus of mice and ameliorated the damage incurred to the hippocampal cornu ammonis 1(CA1)area.Conclusion:T-BII ISGs is a reasonable and convenient method of exerting an obvious preventive effect on mice with AD induced by scopolamine.This,thereby,lays forth a new treatment option for preventing AD.
基金Financial support from the China Natural Science Foundation(NSFC: 81573361 and 81102385)
文摘Lack of mucoadhesive properties is the major drawback to poloxamer 407(F127)-based in situ hydrogels for mucosal administration. The objective of the present study was to construct a novel mucoadhesive and thermosensitive in situ hydrogel drug delivery system based on an aminofunctionalized poloxamer for vaginal administration. First, amino-functionalized poloxamer 407(F127-NH2) was synthesized and characterized with respect to its micellization behavior and interaction with mucin. Then using acetate gossypol(AG) as model drug, AG-loaded F127-NH2-based in situ hydrogels(NFGs) were evaluated with respect to rheology, drug release, ex vivo vaginal mucosal adhesion, in vivo intravaginal retention and local irritation after vaginal administration to healthy female mice. The results show that F127-NH2 is capable of forming a thermosensitive in situ hydrogel with sustained drug release properties. An interaction between positively charged F127-NH2 and negatively charged mucin wasrevealed by changes in the particle size and zeta potential of mucin particles as well as an increase in the complex modulus of NFG caused by mucin. Ex vivo and in vivo fluorescence imaging and quantitative analysis of the amount of AG remaining in mouse vaginal lavage all demonstrated greater intravaginal retention of NFG than that of an unmodified F127-based in situ hydrogel. In conclusion, amino group functionalization confers valuable mucoadhesive properties on poloxamer 407.