An automated thin-layer flow cell electrodeposition system was developed for growing Bi2Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt, ...An automated thin-layer flow cell electrodeposition system was developed for growing Bi2Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt, this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4∶3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO+2 reduction excludes the possibility of Bi2Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO+2 occurs in Te direct deposition. The effective way of depositing Bi2Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2∶3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about (0.30.4 μm) in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.展开更多
The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, s...The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.展开更多
Bismuth telluride thick films are suitable for thermoelectric (TE) devices covering large areas and operating at small-to-moderate temperature differences (20 - 200 K). High efficiency and high coefficient of performa...Bismuth telluride thick films are suitable for thermoelectric (TE) devices covering large areas and operating at small-to-moderate temperature differences (20 - 200 K). High efficiency and high coefficient of performance (COP) are expected to be achieved by using thick films in some cooling applications. Bismuth telluride thick films fabrication have been achieved with Galvanostatic and Potentionstatic deposition. Stoichiometric bismuth telluride thick film was obtained by Galvanostatic deposition at current density of 3.1 mAcm-2. Bismuth telluride films with average growth rate of 10 μmh-1 and different composition were obtained. Effects of current density and composition of electrolyte in Galvanostatic deposition were studied. The current density affected the film compactness, where films deposited at lower current density were more compact than those deposited at higher current density. The morphology of the films did not depend on the current density, but chemical composition was observed when different composition of electrolyte was used. Effects of distance between electrodes, composition of electrolyte solution, and stirring in Potentionstatic deposition were studied. The shorter the distance between electrodes, the higher the electric field, thus the higher current density was applied and the deposited film was less compact. The current density increased more rapidly with stirring during electrodeposition which leads to less compact film. Through this study, films electrode-posited from solution containing 0.013 M Bi(NO3)3.5 H2O, 0.01 M TeO2 and 1 M HNO3 at 3.1 mA cm-2 for 6 hours without stirring and with interelectrode distance of 4.5 cm were free-standing with average film thickness of 60 μm and optimum film composition of Bi2Te3. The crystallite size of the later films was found to be around 4.3 nm using Scherrer’s equation from XRD patterns. Also, negative Seebeck coefficient for the same samples was revealed with an average value of -82 μV.K-1.展开更多
Magneto-optic Faraday rotation effect and the amount of bismuth substituted in yttrium iron garnet single crystal films prepared by gel-coating on modified gadolinium-gallium garnet substrates are investigated, where ...Magneto-optic Faraday rotation effect and the amount of bismuth substituted in yttrium iron garnet single crystal films prepared by gel-coating on modified gadolinium-gallium garnet substrates are investigated, where the gel is synthesized by a sol-gel reaction of nitrates and ethylene glycol. The coated gel is annealed in air at temperatures up to 660 ℃ for 4 h, which is about 300 ℃ lower than that of liquid-phase epitaxy. The maximum amount of Bi substitution is x =2.7 and the crystallization temperature of garnet phase decreases with the increase of x down to 520 ℃ for x =2.7. In this film, a huge Faraday rotation of -8.1×10 4 (°)/cm at λ =0.633 μm is obtained.展开更多
Bi2Se3 thin films were electrochemically deposited on Ti and indium tin oxide-coated glass substrates, respectively, at room temperature, using Bi(NO3)3·5H2O and SeO2 as starting materials in diluted HNO3 solut...Bi2Se3 thin films were electrochemically deposited on Ti and indium tin oxide-coated glass substrates, respectively, at room temperature, using Bi(NO3)3·5H2O and SeO2 as starting materials in diluted HNO3 solution. A conventional three-electrode cell was used with a platinum sheet as a counter electrode, and a saturated calomel electrode was used as a reference electrode. The films were annealed in argon atmosphere. The influence of cold isostatic pressing before annealing on the microstructure and thermoelectric properties of the films was investigated. X-ray diffraction analysis indicates that the film grown on the indium tin oxide-coated glass substrate is pure rhombohedral Bi2Se3, and the film grown on the Ti substrate consists of both rhombohedral and orthorhombic Bi2Se3.展开更多
A new basic electrolyte with two cationic plating additives, polydiaminourea and polyaminosulfone, was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil. Tell...A new basic electrolyte with two cationic plating additives, polydiaminourea and polyaminosulfone, was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil. Tellurium starts to deposit at a higher potential (-0.35 V) than bismuth (-0.5 V) in this electrolyte. The tellurium-to-bismuth ratio increases while the deposition potential declines from -1 to -1.25 V, indicating a kinetically quicker bismuth deposition at higher potentials. The as-deposited film features good adhesion to the substrate and smooth morphology, and has a nearly amorphous crystal structure disclosed by X-ray diffraction patterns.展开更多
Cyclic voltammetry and potentiostatic electrolysis were used to investigate the preparation of Co-Bi alloy films in a LiClO 4-DMSO system. The experimental results indicate that the Co-Bi alloy films containing 14 35%...Cyclic voltammetry and potentiostatic electrolysis were used to investigate the preparation of Co-Bi alloy films in a LiClO 4-DMSO system. The experimental results indicate that the Co-Bi alloy films containing 14 35%-29 77% Co can be prepared via potentionstatic electrolysis on Cu substrates, at deposition potential -1 10--1 65 V( vs. SCE) and by controlling the system composition and deposition condition. They are uniform gray films with a metallic luster and they are adhered firmly to the Cu substrate. The films were analyzed by EDS, SEM and XRD. After heat treatment of crystallization at 275 ℃ for 1 h, the alloy phase of Co-Bi can be confirmed via the XRD pattern.展开更多
The cyclic voltametry and potentiostatic electrolysis was used to investigate the preparation of Bi-Fe alloy films in LiClO4-DMSO (dimethylsulfoxide) system. The effects of several factors including the potential of d...The cyclic voltametry and potentiostatic electrolysis was used to investigate the preparation of Bi-Fe alloy films in LiClO4-DMSO (dimethylsulfoxide) system. The effects of several factors including the potential of deposition, current density and concentration of iron and bismuth in the solution on the Fe content in the alloy deposits were studied. Experimental results indicated that the amorphous alloy films of Bi-Fe containing Fe 4.40wt%-33.67wt% could be prepared by controlling the system composition and deposition conditions. They were gray, uniform, metallic luster and adhered firmly to the copper substrates analyzed by EDS, SEM and XRD. After heat treatment of crystallization at 270℃ for 1h, the crystal phase of Bi-Fe can be found in XRD patterns.展开更多
Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperature below or above Tc, respectively. The transition temperature Tc decreases as the fil...Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperature below or above Tc, respectively. The transition temperature Tc decreases as the film thickness increases. By combining thickness dependence of the films resistivity, we find the insulating behaviour results from the states inside film, while the metallic behaviour originates from the interface states. We show that quantum size effect in a Bi film, such as the semimetal-to-semiconductor transition, is only observable at a temperature higher than Tc.展开更多
Bi2-xSbxTe3 thermoelectric films were electrochemically deposited from the solution containing Bi^3+, HTeO2^+and SbO^+. ESEM (environmental scanning electron microscope) investigations indicated that the crystall...Bi2-xSbxTe3 thermoelectric films were electrochemically deposited from the solution containing Bi^3+, HTeO2^+and SbO^+. ESEM (environmental scanning electron microscope) investigations indicated that the crystalline state of Bi2-xSbxTe3 films transformed from equiaxed crystal to dendritic crystal with the negative shift of deposition potential. XRD and EDS were used to characterize the structure and composition of the electrodeposited films. The Seebeck coefficient and the temperature dependence of the resistance of Bi2-xSbxTe3 films were measured. The results showed that the composition of the film electrodeposited at -0.5 V is Bi2-xSbxTe3 with the largest Seebeck coefficient of 213 μV·K^-1.展开更多
P-type Bi0.45Sb1.55Te3 thermoelectric material was synthesized using cold pressing process. The obtained sample was prepared in the form of pellet with a diameter of 10 mm and 2 mm thick and used as a target for laser...P-type Bi0.45Sb1.55Te3 thermoelectric material was synthesized using cold pressing process. The obtained sample was prepared in the form of pellet with a diameter of 10 mm and 2 mm thick and used as a target for laser ablation. The laser source was a pulsed CO2 laser working at a wavelength of 10.6 μm with a laser energy density of 2 J/cm2 per pulse. P-type Bi0.45Sb1.55Te3 thermoelectric thin films were deposited on Si substrates for different ablation times of 1, 2 and 3 h. The cross-section and surface morphologies of the thermoelectric films were investigated using field emission scanning electron microscopy (FE-SEM). The results show that the thickness and average particle size of the films increased from 35 to 58 nm, and 28 to 35 nm, respectively, when the ablation time was increased from 1 to 3 h. The crystalline structure of the TE films was investigated by X-ray diffraction (XRD).展开更多
Pr6O11-doped bismuth titanate (BixPryTi3O12, BPT) thin films with random orientation were fabricated on Pt/Ti/SiO2/Si substrates by rf magnetron sputtering technique, and the structures and ferroelectric properties of...Pr6O11-doped bismuth titanate (BixPryTi3O12, BPT) thin films with random orientation were fabricated on Pt/Ti/SiO2/Si substrates by rf magnetron sputtering technique, and the structures and ferroelectric properties of the films were investigated. XRD studies indicate that all of BPT films consist of single phase of a bismuth-layered structure with well-developed rod-like grains. For samples with y=0.06 , 0.3, 1.2 and 1.5, I—E characteristics exhibit negative differential resistance behaviors and their ferroelectric hysteresis loops are characterized by large leakage current. Whereas for samples with y=0.6 and 0.9, I—E characteristics are of simple ohmic behaviors and their ferroelectric hysteresis loops are saturated and undistorted. The remanent polarization (Pr) and coercive field (Ec) of the BPT Film with y=0.9 are above 35 μC/cm2 and 80 kV/cm, respectively.展开更多
Hydrogen production from photoelectrochemical(PEC)water splitting has been regarded as a promising way to utilize renewable and endless solar energy.However,semiconductor film grown on photoelectrode suffers from nume...Hydrogen production from photoelectrochemical(PEC)water splitting has been regarded as a promising way to utilize renewable and endless solar energy.However,semiconductor film grown on photoelectrode suffers from numerous challenges,leading to the poor PEC performance.Herein,a straightforward sol-gel method with the ligand-induced growth strategy was employed to obtain dense and homogeneous copper bismuthate photocathodes for PEC hydrogen evolution reaction.By various characterizations,it was found that the nucleation and surface growth of CuBi_(2)O_(4)layer induced by 2-methoxyethanol ligand(2-CuBi_(2)O_(4))demonstrated a decent crystallinity and coverage,as well as a large grain size and a low oxygen vacancy concentration,leading to the good ability of light absorption and carrier migration.Consequently,under simulated sunlight irradiation(AM1.5G,100 mW/cm^(2)),the 2-CuBi_(2)O_(4)photocathode achieved an enhanced photocurrent density of−1.34 mA·cm^(−2)at 0.4 V versus the reversible hydrogen electrode and a promising applied bias photon-to-current efficiency of 0.586%.This surface modification by ligand growth strategy will shed light on the future design of advanced photoelectrodes for PEC water splitting.展开更多
基金Project(50401008) supported by the Chinese National Natural Science Foundation Project(2004CCA03200) supportedby the National Basic Research Program
文摘An automated thin-layer flow cell electrodeposition system was developed for growing Bi2Te3 thin film by ECALE. The dependence of the Bi and Te deposition potentials on Pt electrode was studied. In the first attempt, this reductive Te underpotential deposition (UPD)/reductive Bi UPD cycle was performed to 100 layers. A better linearity of the stripping charge with the number of cycles has been shown and confirmed a layer-by-layer growth mode, which is consistent with an epitaxial growth. The 4∶3 stoichiometric ratio of Bi to Te suggests that the incomplete charge transfer in HTeO+2 reduction excludes the possibility of Bi2Te3 formation. X-ray photoelectron spectroscopy (XPS) analysis also reveals that the incomplete charge transfer in HTeO+2 occurs in Te direct deposition. The effective way of depositing Bi2Te3 on Pt consists in oxidative Te UPD and reductive Bi UPD. The thin film deposited by this procedure was characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and X-ray photoelectron spectroscopy(XPS). A polycrystalline characteristic was confirmed by XRD. The 2∶3 stoichiometric ratio was confirmed by XPS. The SEM image indicates that the deposit looks like a series of buttons about (0.30.4 μm) in diameter, which is corresponding with calculated thickness of the epitaxial film. This suggests that the particle growth appears to be linear with the number of cycles, as it is consistent with a layer by layer growth mode.
文摘The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.
文摘Bismuth telluride thick films are suitable for thermoelectric (TE) devices covering large areas and operating at small-to-moderate temperature differences (20 - 200 K). High efficiency and high coefficient of performance (COP) are expected to be achieved by using thick films in some cooling applications. Bismuth telluride thick films fabrication have been achieved with Galvanostatic and Potentionstatic deposition. Stoichiometric bismuth telluride thick film was obtained by Galvanostatic deposition at current density of 3.1 mAcm-2. Bismuth telluride films with average growth rate of 10 μmh-1 and different composition were obtained. Effects of current density and composition of electrolyte in Galvanostatic deposition were studied. The current density affected the film compactness, where films deposited at lower current density were more compact than those deposited at higher current density. The morphology of the films did not depend on the current density, but chemical composition was observed when different composition of electrolyte was used. Effects of distance between electrodes, composition of electrolyte solution, and stirring in Potentionstatic deposition were studied. The shorter the distance between electrodes, the higher the electric field, thus the higher current density was applied and the deposited film was less compact. The current density increased more rapidly with stirring during electrodeposition which leads to less compact film. Through this study, films electrode-posited from solution containing 0.013 M Bi(NO3)3.5 H2O, 0.01 M TeO2 and 1 M HNO3 at 3.1 mA cm-2 for 6 hours without stirring and with interelectrode distance of 4.5 cm were free-standing with average film thickness of 60 μm and optimum film composition of Bi2Te3. The crystallite size of the later films was found to be around 4.3 nm using Scherrer’s equation from XRD patterns. Also, negative Seebeck coefficient for the same samples was revealed with an average value of -82 μV.K-1.
文摘Magneto-optic Faraday rotation effect and the amount of bismuth substituted in yttrium iron garnet single crystal films prepared by gel-coating on modified gadolinium-gallium garnet substrates are investigated, where the gel is synthesized by a sol-gel reaction of nitrates and ethylene glycol. The coated gel is annealed in air at temperatures up to 660 ℃ for 4 h, which is about 300 ℃ lower than that of liquid-phase epitaxy. The maximum amount of Bi substitution is x =2.7 and the crystallization temperature of garnet phase decreases with the increase of x down to 520 ℃ for x =2.7. In this film, a huge Faraday rotation of -8.1×10 4 (°)/cm at λ =0.633 μm is obtained.
基金supported by the Major State Basic Research Development Program of China (No.2007CB607500.)
文摘Bi2Se3 thin films were electrochemically deposited on Ti and indium tin oxide-coated glass substrates, respectively, at room temperature, using Bi(NO3)3·5H2O and SeO2 as starting materials in diluted HNO3 solution. A conventional three-electrode cell was used with a platinum sheet as a counter electrode, and a saturated calomel electrode was used as a reference electrode. The films were annealed in argon atmosphere. The influence of cold isostatic pressing before annealing on the microstructure and thermoelectric properties of the films was investigated. X-ray diffraction analysis indicates that the film grown on the indium tin oxide-coated glass substrate is pure rhombohedral Bi2Se3, and the film grown on the Ti substrate consists of both rhombohedral and orthorhombic Bi2Se3.
基金supported by the National Natural Science Foundation of China(No.50731006)
文摘A new basic electrolyte with two cationic plating additives, polydiaminourea and polyaminosulfone, was investigated for the electrochemical deposition of the bismuth telluride film on a nickel-plated copper foil. Tellurium starts to deposit at a higher potential (-0.35 V) than bismuth (-0.5 V) in this electrolyte. The tellurium-to-bismuth ratio increases while the deposition potential declines from -1 to -1.25 V, indicating a kinetically quicker bismuth deposition at higher potentials. The as-deposited film features good adhesion to the substrate and smooth morphology, and has a nearly amorphous crystal structure disclosed by X-ray diffraction patterns.
基金Supported by the Thousand- Hundred- Ten Talent Project Foundation ofGuangdong Province Education Office( No.0 0 -0 79- 4 2 10 0 5 ) and State Key L ab of Rare Material Chemistry and Applications
文摘Cyclic voltammetry and potentiostatic electrolysis were used to investigate the preparation of Co-Bi alloy films in a LiClO 4-DMSO system. The experimental results indicate that the Co-Bi alloy films containing 14 35%-29 77% Co can be prepared via potentionstatic electrolysis on Cu substrates, at deposition potential -1 10--1 65 V( vs. SCE) and by controlling the system composition and deposition condition. They are uniform gray films with a metallic luster and they are adhered firmly to the Cu substrate. The films were analyzed by EDS, SEM and XRD. After heat treatment of crystallization at 275 ℃ for 1 h, the alloy phase of Co-Bi can be confirmed via the XRD pattern.
基金supported by the Thousand-Hundred-Ten Talent Project Foundation of Guangdong Province Education Bureau No.00-079-421005).
文摘The cyclic voltametry and potentiostatic electrolysis was used to investigate the preparation of Bi-Fe alloy films in LiClO4-DMSO (dimethylsulfoxide) system. The effects of several factors including the potential of deposition, current density and concentration of iron and bismuth in the solution on the Fe content in the alloy deposits were studied. Experimental results indicated that the amorphous alloy films of Bi-Fe containing Fe 4.40wt%-33.67wt% could be prepared by controlling the system composition and deposition conditions. They were gray, uniform, metallic luster and adhered firmly to the copper substrates analyzed by EDS, SEM and XRD. After heat treatment of crystallization at 270℃ for 1h, the crystal phase of Bi-Fe can be found in XRD patterns.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10874217 and 10427402)the National Basic Research Program of China(973 Program)(Grant No.2006CB933000)
文摘Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperature below or above Tc, respectively. The transition temperature Tc decreases as the film thickness increases. By combining thickness dependence of the films resistivity, we find the insulating behaviour results from the states inside film, while the metallic behaviour originates from the interface states. We show that quantum size effect in a Bi film, such as the semimetal-to-semiconductor transition, is only observable at a temperature higher than Tc.
基金This work was financially supported by the National Key Project on Basic Research of China (No.ZM200103A01)
文摘Bi2-xSbxTe3 thermoelectric films were electrochemically deposited from the solution containing Bi^3+, HTeO2^+and SbO^+. ESEM (environmental scanning electron microscope) investigations indicated that the crystalline state of Bi2-xSbxTe3 films transformed from equiaxed crystal to dendritic crystal with the negative shift of deposition potential. XRD and EDS were used to characterize the structure and composition of the electrodeposited films. The Seebeck coefficient and the temperature dependence of the resistance of Bi2-xSbxTe3 films were measured. The results showed that the composition of the film electrodeposited at -0.5 V is Bi2-xSbxTe3 with the largest Seebeck coefficient of 213 μV·K^-1.
文摘P-type Bi0.45Sb1.55Te3 thermoelectric material was synthesized using cold pressing process. The obtained sample was prepared in the form of pellet with a diameter of 10 mm and 2 mm thick and used as a target for laser ablation. The laser source was a pulsed CO2 laser working at a wavelength of 10.6 μm with a laser energy density of 2 J/cm2 per pulse. P-type Bi0.45Sb1.55Te3 thermoelectric thin films were deposited on Si substrates for different ablation times of 1, 2 and 3 h. The cross-section and surface morphologies of the thermoelectric films were investigated using field emission scanning electron microscopy (FE-SEM). The results show that the thickness and average particle size of the films increased from 35 to 58 nm, and 28 to 35 nm, respectively, when the ablation time was increased from 1 to 3 h. The crystalline structure of the TE films was investigated by X-ray diffraction (XRD).
基金Project (50774034) supported by the National Natural Science Foundation of ChinaProject (06JJ20005) supported by the Natural Science Foundation of Hunan Province, ChinaProject (05A055) supported by the Educational Science Foundation of Hunan Province, China
文摘Pr6O11-doped bismuth titanate (BixPryTi3O12, BPT) thin films with random orientation were fabricated on Pt/Ti/SiO2/Si substrates by rf magnetron sputtering technique, and the structures and ferroelectric properties of the films were investigated. XRD studies indicate that all of BPT films consist of single phase of a bismuth-layered structure with well-developed rod-like grains. For samples with y=0.06 , 0.3, 1.2 and 1.5, I—E characteristics exhibit negative differential resistance behaviors and their ferroelectric hysteresis loops are characterized by large leakage current. Whereas for samples with y=0.6 and 0.9, I—E characteristics are of simple ohmic behaviors and their ferroelectric hysteresis loops are saturated and undistorted. The remanent polarization (Pr) and coercive field (Ec) of the BPT Film with y=0.9 are above 35 μC/cm2 and 80 kV/cm, respectively.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3803600)the National Natural Science Foundation of China(Grant No.U20A20246)the Fundamental Research Funds for the Central Universities,China.
文摘Hydrogen production from photoelectrochemical(PEC)water splitting has been regarded as a promising way to utilize renewable and endless solar energy.However,semiconductor film grown on photoelectrode suffers from numerous challenges,leading to the poor PEC performance.Herein,a straightforward sol-gel method with the ligand-induced growth strategy was employed to obtain dense and homogeneous copper bismuthate photocathodes for PEC hydrogen evolution reaction.By various characterizations,it was found that the nucleation and surface growth of CuBi_(2)O_(4)layer induced by 2-methoxyethanol ligand(2-CuBi_(2)O_(4))demonstrated a decent crystallinity and coverage,as well as a large grain size and a low oxygen vacancy concentration,leading to the good ability of light absorption and carrier migration.Consequently,under simulated sunlight irradiation(AM1.5G,100 mW/cm^(2)),the 2-CuBi_(2)O_(4)photocathode achieved an enhanced photocurrent density of−1.34 mA·cm^(−2)at 0.4 V versus the reversible hydrogen electrode and a promising applied bias photon-to-current efficiency of 0.586%.This surface modification by ligand growth strategy will shed light on the future design of advanced photoelectrodes for PEC water splitting.
基金National Natural Science Foundation of China(52102133)Natural Science Foundation of Jiangsu Province,China(BK20210354)+1 种基金Fundamental Research Funds for the Central Universities(30921011217)Young Elite Scientists Sponsorship Program by CAST(2021-2023QNRC001)。