期刊文献+
共找到192篇文章
< 1 2 10 >
每页显示 20 50 100
An Efficient Stacked-LSTM Based User Clustering for 5G NOMA Systems 被引量:1
1
作者 S.Prabha Kumaresan Chee Keong Tan Yin Hoe Ng 《Computers, Materials & Continua》 SCIE EI 2022年第9期6119-6140,共22页
Non-orthogonal multiple access(NOMA)has been a key enabling technology for the fifth generation(5G)cellular networks.Based on the NOMA principle,a traditional neural network has been implemented for user clustering(UC... Non-orthogonal multiple access(NOMA)has been a key enabling technology for the fifth generation(5G)cellular networks.Based on the NOMA principle,a traditional neural network has been implemented for user clustering(UC)to maximize the NOMA system’s throughput performance by considering that each sample is independent of the prior and the subsequent ones.Consequently,the prediction of UC for the future ones is based on the current clustering information,which is never used again due to the lack of memory of the network.Therefore,to relate the input features of NOMA users and capture the dependency in the clustering information,time-series methods can assist us in gaining a helpful insight into the future.Despite its mathematical complexity,the essence of time series comes down to examining past behavior and extending that information into the future.Hence,in this paper,we propose a novel and effective stacked long short term memory(S-LSTM)to predict the UC formation of NOMA users to enhance the throughput performance of the 5G-based NOMA systems.In the proposed strategy,the S-LSTM is modelled to handle the time-series input data to improve the predicting accuracy of UC of the NOMA users by implementing multiple LSTM layers with hidden cells.The implemented LSTM layers have feedback connections that help to capture the dependency in the clustering information as it propagates between the layers.Specifically,we develop,train,validate and test the proposed model to predict the UC formation for the futures ones by capturing the dependency in the clustering information based on the time-series data.Simulation results demonstrate that the proposed scheme effectively predicts UC and thereby attaining near-optimal throughput performance of 98.94%compared to the exhaustive search method. 展开更多
关键词 Non-orthogonal multiple access(NOMA) deep neural network(DNN) long short term memory(LSTM) temporal channel user clustering
下载PDF
A Process to Support Analysts in Exploring and Selecting Content from Online Forums
2
作者 Darlinton Carvalho Ricardo Marcacini +1 位作者 Carlos Lucena Solange Rezende 《Social Networking》 2014年第2期86-93,共8页
The public content increasingly available on the Internet, especially in online forums, enables researchers to study society in new ways. However, qualitative analysis of online forums is very time consuming and most ... The public content increasingly available on the Internet, especially in online forums, enables researchers to study society in new ways. However, qualitative analysis of online forums is very time consuming and most content is not related to researchers’ interest. Consequently, analysts face the following problem: how to efficiently explore and select the content to be analyzed? This article introduces a new process to support analysts in solving this problem. This process is based on unsupervised machine learning techniques like hierarchical clustering and term co-occurrence network. A tool that helps to apply the proposed process was created to provide consolidated and structured results. This includes measurements and a content exploration interface. 展开更多
关键词 Qualitative Analysis of Online Forums Explore and Select the Online Forums Content Machine Learning Hierarchical clustering terms Co-Occurrence network Consolidated and Structured Results
下载PDF
基于集群辨识和卷积神经网络-双向长短期记忆-时序模式注意力机制的区域级短期负荷预测 被引量:1
3
作者 陈晓梅 肖徐东 《现代电力》 北大核心 2024年第1期106-115,共10页
为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力... 为了解决区域级短期电力负荷预测时输入特征过多和负荷时序性较强的问题,提出一种基于集群辨识和卷积神经网络(convolutional neural networks,CNN)-双向长短期记忆网络(bi-directional long short-term memory,BiLSTM)-时序模式注意力机制(temporal pattern attention,TPA)的预测方法。首先,将用电模式和天气作为影响因素,基于二阶聚类算法对区域内的负荷节点进行集群辨识,再从每个集群中挑选代表特征作为深度学习模型的输入,这样既能减少输入特征维度,降低计算复杂度,又能综合考虑预测区域的整体特征,提升预测精度。然后,针对区域电力负荷时序性的特点,用CNN-BiLSTM-TPA模型完成训练和预测,该模型能提取输入数据的双向信息生成隐状态矩阵,并对隐状态矩阵的重要特征加权,从多时间步上捕获双向时序信息用于预测。最后,在美国加利福尼亚州实例上分析验证了所提方法的有效性。 展开更多
关键词 短期电力负荷预测 双向长短期记忆网络 时序模式注意力机制 集群辨识 卷积神经网络
下载PDF
基于CBAM-LSTM的风电集群功率短期预测方法 被引量:1
4
作者 张哲 王勃 《东北电力大学学报》 2024年第1期1-8,共8页
风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolut... 风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolutional Block Attention Module, CBAM)和长短时记忆网络(Long Short-Term Memory, LSTM)相结合的模型。首先,使用CBAM对风电功率时间序列数据特征和数值天气预报中蕴含的空间特性进行提取,该模块能够自适应地学习时间和空间上的重要特征;然后,将提取的特征输入到LSTM层结构中进行功率预测。为了验证所提方法的有效性,使用中国吉林省某风电场的数据集进行验证,实验结果表明,与其他功率预测方法相比,文中所提方法平均绝对误差(Mean Absolute Error, MAE)平均降低2.67%;决定系数(R-Square, R2)平均提高23%;均方根误差(Root Mean Square Error, RMSE)平均降低2.69%。 展开更多
关键词 风电功率 卷积块注意力机制 长短时记忆神经网络 短期风电集群功率预测
下载PDF
基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型
5
作者 冯国富 卢胜涛 +1 位作者 陈明 王耀辉 《江苏农业学报》 CSCD 北大核心 2024年第3期490-499,共10页
为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means... 为精确预测水产养殖水体溶解氧含量,本研究提出一种基于自注意力机制(ATTN)和改进的K-means聚类-基于残差和批标准化(BN)的双向长短期记忆网络(BiLSTM)的水产养殖水体溶解氧含量预测模型。首先,根据环境数据的相似性,使用改进的K-means算法将数据划分成若干个类别;然后,在BiLSTM基础上构建残差连接和加入BN完成高层次特征提取,利用BiLSTM的长期记忆能力保存特征信息;最后,引入自注意力机制突出不同时间节点数据特征的重要性,进一步提升模型的性能。试验结果表明,本研究提出的基于自注意力机制和改进的K-BiLSTM模型的平均绝对误差为0.238、均方根误差为0.322、平均绝对百分比误差为0.035,与单一的BP模型、CNN-LSTM模型、传统的K-means-基于残差和BN的BiLSTM-ATTN等模型相比具有更优的预测性能和泛化能力。 展开更多
关键词 水产养殖 溶解氧预测 K-MEANS聚类 双向长短期记忆网络(BiLSTM) 自注意力机制
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
6
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
7
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(LSTM)神经网络 鲁棒性
下载PDF
基于VMD和时空网络变分自编码器的负荷聚类
8
作者 陆绮荣 王泽鑫 +1 位作者 叶颖雅 邹健 《科学技术与工程》 北大核心 2024年第14期5831-5838,共8页
为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进... 为了解决用户用电负荷曲线数据维度高、特征提取困难以及序列存在信号模态混叠的问题,提出了使用变分模态分解(variational modal decomposition,VMD)和改进基于时空网络的变分自编码器(variational auto-encoder,VAE)对电力负荷曲线进行特征提取。通过模态分解得到信号的固有模态,对模态重构得到时序特征较明显的序列信号。再通过长短期记忆网络(long short-term memory network,LSTM)和卷积网络(convolutional neural network,CNN)组成的时空变分自编码器进行潜在特征提取,并构建网络分类器来联合损失优化自编码器模型。最后使用Minibatchkmeans算法聚类并计算聚类中心。使用UCI数据集中葡萄牙居民用电量作为实验数据,通过实验结果表明经模态分解后通过降维再聚类的算法在戴维斯丁堡指数(Davies-Bouldin index,DBI)和轮廓系数(silhouette coefficient,SC)上表现出较好效果。 展开更多
关键词 负荷聚类 变分模态分解 长短期记忆网络 卷积神经网络 变分自编码器
下载PDF
基于FCM-LSTM的光热发电出力短期预测 被引量:1
9
作者 刘振路 郭军红 +2 位作者 李薇 贾宏涛 陈卓 《工程科学学报》 EI CSCD 北大核心 2024年第1期178-186,共9页
对光热电站的出力进行短期预测,可以有效应对太阳能随机性和波动性带来的影响,为电网调度做好准备.该文以青海某光热电站为例,首先使用模糊C均值聚类算法对预处理后的实验数据进行分类,然后通过分析不同聚类类型下出力和气象数据中各因... 对光热电站的出力进行短期预测,可以有效应对太阳能随机性和波动性带来的影响,为电网调度做好准备.该文以青海某光热电站为例,首先使用模糊C均值聚类算法对预处理后的实验数据进行分类,然后通过分析不同聚类类型下出力和气象数据中各因子间的关联程度,充分挖掘出数据间的关系,确定不同类型预测模型的输入变量,进而构建出不同类别下的长短期记忆神经网络预测模型.结果表明,与传统长短期记忆神经网络模型、BP神经网络模型、支持向量机模型和随机森林模型的预测结果相比,基于模糊C均值聚类的长短期记忆神经网络预测模型效果良好,大幅减少了预测误差,验证了该预测模型的有效性. 展开更多
关键词 光热电站 气象因素 短期出力预测 长短期记忆神经网络 模糊C均值聚类
下载PDF
基于u-shapelets聚类的刀具剩余寿命预测方法
10
作者 王妍 胡小锋 刘颖超 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1286-1295,共10页
针对不同刀具的性能衰退规律呈现出多种趋势,单一固定的全局模型难以对不同性能衰退规律的刀具进行准确剩余寿命预测的问题,提出一种基于u-shapelets聚类与长短时记忆网络(LSTM)模型相结合的刀具剩余寿命预测方法。首先,对刀具加工过程... 针对不同刀具的性能衰退规律呈现出多种趋势,单一固定的全局模型难以对不同性能衰退规律的刀具进行准确剩余寿命预测的问题,提出一种基于u-shapelets聚类与长短时记忆网络(LSTM)模型相结合的刀具剩余寿命预测方法。首先,对刀具加工过程监控信号提取u-shapelets集合,并计算各u-shapelet与时间序列的距离得到距离矩阵;其次,通过基于密度聚类方法对距离矩阵进行聚类,得到聚类结果;最后,根据聚类结果基于各类别数据分别训练长短时记忆网络模型进行刀具剩余寿命的预测。以轮槽铣刀加工过程监控数据进行验证,并与Kmeans聚类、谱聚类、层次聚类、DBSCAN聚类方法进行比较,验证了所提方法的有效性。 展开更多
关键词 过程监控数据 u-shapelets聚类 聚类算法 长短时记忆网络 刀具剩余寿命预测
下载PDF
基于多级特征提取的BiLSTM短期光伏出力预测
11
作者 林文婷 李培强 +1 位作者 荆志宇 钟吴君 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期284-297,共14页
传统光伏预测模型易受气象数据波动的影响,且对气象特征不敏感。由此,提出基于多级特征提取的BiLSTM短期光伏出力预测方法,用于预测不同天气类型下的光伏出力。首先,选取与光伏出力相关性较高的气象因素作为输入特征;使用模糊C均值(FCM... 传统光伏预测模型易受气象数据波动的影响,且对气象特征不敏感。由此,提出基于多级特征提取的BiLSTM短期光伏出力预测方法,用于预测不同天气类型下的光伏出力。首先,选取与光伏出力相关性较高的气象因素作为输入特征;使用模糊C均值(FCM)聚类方法,对样本进行灵活划分,通过计算Xie-Beni指标以确定最佳聚类数,将历史数据集聚类为晴天、少云天、晴转多云、阴雨天和恶劣天气;其次,构建CNN-CBAM-TCN多级特征提取器(MFE):利用卷积神经网络(CNN)进行初步的特征提取,结合卷积注意力块(CBAM)抑制非重要特征,之后,利用时间卷积网络(TCN)进一步捕捉日内光伏出力的时序特征;最后,借助双向长短期记忆网络(BiLSTM)进行光伏出力预测。在实例分析中,验证了使用Xie-Beni指标确定最佳聚类数的有效性,证明了该模型较其他预测模型在复杂天气类型下具有更高预测精度。 展开更多
关键词 短期光伏出力预测 双向长短期记忆网络 卷积注意力块 时间卷积网络 模糊C均值聚类 Xie-Beni指标
下载PDF
基于GA-WNN模型的光伏中期功率预测研究
12
作者 张慧娥 刘大贵 +2 位作者 朱婷婷 白彩清 张慧敏 《自动化仪表》 CAS 2024年第9期70-75,共6页
为解决光伏发电存在限电情况下,光伏中期功率预测结果偏小导致预测精度降低的问题,提出了一种基于光伏可用功率的遗传算法(GA)优化小波神经网络(WNN)的预测模型。GA-WNN模型在预测日的相近日期内覆盖晴天、雨天、多云等多种天气类型,通... 为解决光伏发电存在限电情况下,光伏中期功率预测结果偏小导致预测精度降低的问题,提出了一种基于光伏可用功率的遗传算法(GA)优化小波神经网络(WNN)的预测模型。GA-WNN模型在预测日的相近日期内覆盖晴天、雨天、多云等多种天气类型,通过模糊C-均值聚类算法辨识限电情况,并将光伏可用功率作为训练目标,建立了WNN光伏中期预测训练模型。GA-WNN模型以预测日获取的光伏数值天气预报作为输入,经过训练后可以直接预测未来1~10 d的光伏中期功率。通过新疆某光伏运行电站的实际运行数据进行验证,预测精度达96%以上。将GA应用于WNN预测模型中,可显著提高光伏中期功率预测精度。 展开更多
关键词 光伏 中期功率预测 遗传算法 小波神经网络 可用功率 模糊C-均值聚类
下载PDF
基于KLPP-K-means-BiLSTM的台区短期电力负荷预测
13
作者 朱江 汪帆 +2 位作者 曹春堂 易灵芝 邹嘉乐 《电机与控制应用》 2024年第3期108-115,I0001,共9页
随着智能电网的发展,各场景的用电更加多元化,而准确的台区负荷预测是确保相关电力部门制定合适检修任务的关键,同时为有序用电、电网经济运行提供重要参考。为了挖掘台区负荷的特征以提高台区负荷预测的精度,提出了一种基于核主元分析... 随着智能电网的发展,各场景的用电更加多元化,而准确的台区负荷预测是确保相关电力部门制定合适检修任务的关键,同时为有序用电、电网经济运行提供重要参考。为了挖掘台区负荷的特征以提高台区负荷预测的精度,提出了一种基于核主元分析与局部保持投影降维、K均值聚类算法(K-means)以及双向长短时记忆网络(BiLSTM)的台区电力负荷预测方法。首先利用核局部保持投影(KLPP)对台区多特征负荷数据进行降维以提取主要特征信息;然后采取K-means聚类算法将相似特征的数据归类成各自的簇集;最后针对聚类后的各典型类型,有针对性地训练BiLSTM,并选取中国某高校低压台区负荷作为算例与其他经典预测方法进行对比分析,结果表明所提方法更拟合实际负荷走向,有效提升了预测效果。 展开更多
关键词 电力负荷预测 降维 K均值聚类算法 双向长短时记忆网络 核局部保持投影
下载PDF
基于改进FCM-LSTM的光伏出力短期预测研究
14
作者 秦宇 许野 +2 位作者 王鑫鹏 王涛 李薇 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期304-313,共10页
受制于外界气象条件和设备性能损失等多方面因素的影响,光伏电站的发电功率呈现出很强的波动性和随机性,精确的光伏出力预测对光伏电站的运营管理和电网的调度运行至关重要。针对传统模糊C均值聚类算法(FCM)无法自主确定聚类数以及欧氏... 受制于外界气象条件和设备性能损失等多方面因素的影响,光伏电站的发电功率呈现出很强的波动性和随机性,精确的光伏出力预测对光伏电站的运营管理和电网的调度运行至关重要。针对传统模糊C均值聚类算法(FCM)无法自主确定聚类数以及欧氏距离在高维数据分类上的不足,在传统FCM的基础上引入自适应因子和加入余弦距离作为样本分类指标,确定与待预测数据相似程度最高的历史样本簇集,创新性地提出一种基于改进FCM和长短期记忆(LSTM)神经网络的短期光伏出力组合预测模型。在云南某光伏电站的应用结果显示,对比其他预测模型,所提方法的历史样本分类效果更佳,发电功率预测精度更高,验证了该方法的有效性与优越性。 展开更多
关键词 光伏出力短期预测 模糊C均值聚类 自适应方法 余弦距离 长短期记忆神经网络
下载PDF
基于多因素组合分析的电力系统长期负荷预测研究
15
作者 厉瑜 益西措姆 +3 位作者 杜宁刚 达娃央宗 郭彦君 王进仕 《电网与清洁能源》 CSCD 北大核心 2024年第7期81-87,94,共8页
电力系统长期负荷预测影响因素较多,仅利用单一因素进行负荷预测的精度较低,因此提出基于多因素组合分析的电力系统长期负荷预测方法。通过可辨识矩阵采集电力负荷数据后,利用ACO-PAM综合算法对电力数据进行聚类分析,获取有价值的负荷数... 电力系统长期负荷预测影响因素较多,仅利用单一因素进行负荷预测的精度较低,因此提出基于多因素组合分析的电力系统长期负荷预测方法。通过可辨识矩阵采集电力负荷数据后,利用ACO-PAM综合算法对电力数据进行聚类分析,获取有价值的负荷数据;将聚类获取电力负荷数据经数据类因素量化和非数据类因素量化处理后,分析多种因素与负荷的相关性,将获取的多因素作为遗传算法改进神经网络的输入,输出电力系统长期负荷预测结果。实验结果表明:在多因素的影响下,该方法的电力系统长期负荷预测结果逼近实际值;与2种对比方法相比,其平均绝对误差分别小130.98、41.65万吨标准煤,平均相对误差分别小3.77%、1.19%,说明所提方法预测效果好。 展开更多
关键词 多因素 组合分析 电力系统 长期负荷预测 数据聚类 神经网络
下载PDF
基于多维指标关联的物联网装备异常预测方法
16
作者 洪浩彦 杨辉 +1 位作者 姚秋彦 栗琳 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第1期73-79,共7页
针对高动态物联网装备多维指标相互作用使得装备状态时变性极强,难以实现装备状态精准的评估与异常检测的问题,提出一种面向多维指标关联的装备状态异常预测方法。该方法通过计算物联网装备状态海量指标的斯皮尔曼相关系数,得到多维指... 针对高动态物联网装备多维指标相互作用使得装备状态时变性极强,难以实现装备状态精准的评估与异常检测的问题,提出一种面向多维指标关联的装备状态异常预测方法。该方法通过计算物联网装备状态海量指标的斯皮尔曼相关系数,得到多维指标间的相关性,利用主成分分析对与目的检测指标强相关的其他指标进行特征提取,将提取结果和目的指标本身历史数据作为基于长短期记忆神经网络的装备状态感知模型的输入,进而对目的指标未来状态趋势进行精准预测;在此基础上,利用无监督的DBSCAN算法对装备状态感知模型的输出结果进行分析,定位目的指标未来可能出现的异常,实现了装备状态的评估。实验研究结果表明:该方案能够高精度预测物联网装备未来异常的发生,保护物联网装备免受潜在异常的影响,增强物联网装备的稳定性。 展开更多
关键词 多维指标关联 主成分分析 长短期记忆神经网络 DBSCAN 异常检测
下载PDF
基于筋骨假人和意图标注的躯干肌电预测结果校正
17
作者 王琦 周志勇 《计算机应用与软件》 北大核心 2024年第8期101-107,共7页
在人机交互领域,预测躯干肌电信号极具应用潜力。但手部操作、平衡条件等因素会导致躯干肌肉控制模式转换,破坏躯干基于运动信号和肌电信号间的映射关系,因此很难实现高精度躯干肌电预测。为实现对应意图的躯干肌电预测,在设定弯伸腰任... 在人机交互领域,预测躯干肌电信号极具应用潜力。但手部操作、平衡条件等因素会导致躯干肌肉控制模式转换,破坏躯干基于运动信号和肌电信号间的映射关系,因此很难实现高精度躯干肌电预测。为实现对应意图的躯干肌电预测,在设定弯伸腰任务内,测量一组部分椎旁肌肌电信号及运动信号,通过对多维椎旁肌肌电信号的多次两步聚类编码,将其转化为聚类编码号组成的动作向量,作为BiLSTM-CRF算法的输入,实现躯干肌肉动作的分时段标注,进而利用筋骨假人分别校正躯干肌电预测结果。预测校正结果可反映个体特征、躯干和手部动作意图。 展开更多
关键词 椎旁肌 动作意图 两步聚类 双向长短时神经网络 肌电
下载PDF
谱聚类与注意力机制融合的电力负荷数据处理技术
18
作者 吴鑫 杨永利 +3 位作者 李晓君 曹帅 贺成铭 张皓男 《电子设计工程》 2024年第20期93-97,102,共6页
针对电力负荷数据挖掘分析程度不足的现状,设计了一种结合谱聚类、注意力机制与长短期记忆网络的电力负荷预测算法。该算法使用重心拉格朗日插值法对原始数据进行清洗及填补,并利用谱聚类算法识别出电力负荷的类型。通过将不同类型负荷... 针对电力负荷数据挖掘分析程度不足的现状,设计了一种结合谱聚类、注意力机制与长短期记忆网络的电力负荷预测算法。该算法使用重心拉格朗日插值法对原始数据进行清洗及填补,并利用谱聚类算法识别出电力负荷的类型。通过将不同类型负荷的历史曲线作为输入数据,进而采用融合注意力机制的长短期记忆网络实现电力负荷预测。仿真分析结果表明,相较于SC-LSTM和LSTM算法,所提SC-AM-LSTM算法具有更高的预测准确度,能够将电力负荷预测误差减少到5%以内。 展开更多
关键词 负荷预测 长短期记忆网络 谱聚类 注意力机制 数据挖掘
下载PDF
基于k-Medoids聚类和深度学习的分布式短期负荷预测
19
作者 杨玺 陈爽 +2 位作者 彭子睿 高镇 王安龙 《微型电脑应用》 2024年第1期80-83,共4页
为了获得较高的预测精度,提出一种基于k-Medoids聚类和深度学习的分布式短期负荷预测。基于配电变压器的能耗分布,采用k-Medoids聚类将电力负荷数据集中的数据进行聚类,并构建基于深度神经网络(DNN)和长短期记忆网络(LSTM)的短期负荷预... 为了获得较高的预测精度,提出一种基于k-Medoids聚类和深度学习的分布式短期负荷预测。基于配电变压器的能耗分布,采用k-Medoids聚类将电力负荷数据集中的数据进行聚类,并构建基于深度神经网络(DNN)和长短期记忆网络(LSTM)的短期负荷预测模型。在拥有1000个变电站数据子集的武汉配电网络系统中进行验证,验证结果表明,所提的kMedoids聚类可以在减少44%训练时间的基础上拟合出单个变压器预测模型的平均参数,且DNN和LSTM预测模型分别以7.32%和11.15%的平均绝对百分比误差(MAPE)跟踪实际负荷。 展开更多
关键词 短期负荷预测 k-Medoids聚类 深度学习 深度神经网络 长短期记忆网络
下载PDF
基于大数据聚类的通信网络安全态势预测方法研究
20
作者 马馥宇 《通信电源技术》 2024年第9期190-192,共3页
文章综合运用大数据聚类技术和深度学习方法,提出一种基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)、K-means聚类以及长短期记忆(Long Short-Term Memory,LSTM)神经网络的通信网络安... 文章综合运用大数据聚类技术和深度学习方法,提出一种基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)、K-means聚类以及长短期记忆(Long Short-Term Memory,LSTM)神经网络的通信网络安全态势预测方法。该方法通过聚类分析多源异构的网络安全数据,提取关键安全态势特征,并利用LSTM模型建立安全态势预测模型。实验结果验证了该方法的有效性,为智能化网络安全管理提供新的思路。 展开更多
关键词 网络安全态势 大数据聚类 长短期记忆(LSTM)网络
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部