Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel...Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.展开更多
On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cult...On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cultivar NE 7742), the grain protein content and its fractions from regenerated plants with stable agronomic characteristics were studied from 1992 to 1995. The results showed that the variation of grain protein content and its fractions in somaclones from single cell culture in vitro were very significant and the range was very wide (11531770%). Several types of variation were found in the studies, especially the type with higher protein content than that of cultivar NE 7742 (non-culture parent). Among them, -2069% of lines the grain protein content was significantly higher than that of NE 7742 and combined with high yielding potential. The tendency of variation of the four protein fractions showed that the variation of albumin was not obvious and maintained the same level as NE774 increased in some somaclones and decreased in others. However, the percentages both globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and albumm was mainly influenced by globulin under the condition of culture in vitro. The variation of total amount of storage protein and the ratio between gliadin and glutenin was mainly affected by glutenin. The results mentioned above demonstrated that the induction and screening of somaclonal variation could be an effective way in wheat improvement in combining high protein content with high yield.展开更多
Compared with 2D tumor cell culture, 3D tumor cell culture can better simulate the microenvironment of signal transduction between cells and extracellular matrix. As one of the best cell models in tumor research, it h...Compared with 2D tumor cell culture, 3D tumor cell culture can better simulate the microenvironment of signal transduction between cells and extracellular matrix. As one of the best cell models in tumor research, it has been widely used in the study of cancer cell morphology, nanotechnology drug delivery system, and anticancer drug screening. The main theme of this paper is to review the previous research of 3D cell culture applying to tumors in vitro and the prospects for the applications of 3D cell culture system.展开更多
AIM:The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,...AIM:The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological halflife of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS:We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by realtime reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS:In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by coadministration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION:These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC.展开更多
INTRODUCTIONTo date ,the major therapy for rectal carcinoma is extensive abdomino-perineal resection[1]. Unfortunately ,after resection of rectal carcinoma ,many patients still die of blood-borne metastases ,usually i...INTRODUCTIONTo date ,the major therapy for rectal carcinoma is extensive abdomino-perineal resection[1]. Unfortunately ,after resection of rectal carcinoma ,many patients still die of blood-borne metastases ,usually in the liver or lungs ,or local prlvic recurrence[2,3],which is the major cause of morbidity and mortality in patients with rectal carcinoma .Pre-or postoperative radiotherapy can reduce the incidence of local rdcurrence[4-7].展开更多
Microscope observations of normal human ke- ratinocytes (NHK) propagated in a serum-free medium reveal a high frequency (>70%) of pentagonally-shaped colonies over a wide range of colony sizes that persist over man...Microscope observations of normal human ke- ratinocytes (NHK) propagated in a serum-free medium reveal a high frequency (>70%) of pentagonally-shaped colonies over a wide range of colony sizes that persist over many sequential cell generations. NHK colonies derived from sin- gle cell isolates also display pentagonal symme- try as confirmed by a photographic technique known as “Markham Rotation”. The generality of pentagonal cellular morphology was extended to observations in situ of pentagonally-shaped basal layer epidermal cells of normal human epidermis, monolayer cultures of normal and immortalized keratinocytes, several different ch- ick embryo cells, and in previously published photographs. Statistical methods were applied that differentiate planar close-packing of polygonal configurations observed in living cellular system from several examples of non-living cellular aggregates that were produced spontaneously in nature or in the laboratory under defined physico-chemical conditions.展开更多
Presently, there is no clear consensus on the best approach to estimate carotenoid bioavailability. The best alternative would be to use human studies, but they are labour-intensive and expensive and can only be used ...Presently, there is no clear consensus on the best approach to estimate carotenoid bioavailability. The best alternative would be to use human studies, but they are labour-intensive and expensive and can only be used to investigate a limited number of samples. Hence, a number of in vitro: models have been developed to study pre-absorptive processes and factors affecting bioavailability. The question is, however, how well the results obtained by the various methods correlate to each other and to the in vivo situation. In the present paper, we have compared in vivo data from two human studies on differently processed soups containing carrots, tomato and broccoli, with results obtained by in vitro characterisation of the same soups. In vitro bioaccessibility was estimated by a static in vitro digestion investigating matrix release and micellarization of carotenoids and by uptake studies in a human intestinal cell line (Caco-2). In vivo data was obtained from clinical studies measuring total plasma carotenoid concentrations in human subjects after 4 weeks daily consumption of the soups. Comparison of the in vitro and in vivo results indicate that the combination of a two-step in vitro digestion and Caco-2 cells seems to be a useful tool for estimation of β-carotene bioaccessibility and screening of factors governing the release of β-carotene from this type of food. For lycopene the in vitro and in vivo results were less consistent, suggesting that reliable prediction of lycopene bioavailability might be more problematic.展开更多
Iron deficiency anemia(IDA)is a common nutritional problem, but traditional iron supplements cause many adverse reactions. Thus, the development of a novel iron supplement might be significant for the treatment of IDA...Iron deficiency anemia(IDA)is a common nutritional problem, but traditional iron supplements cause many adverse reactions. Thus, the development of a novel iron supplement might be significant for the treatment of IDA. This study aimed to study the transport mechanism of Flammulina velutipes polysaccharide-iron complex(FVP1-Fe(Ⅲ))in Caco-2 cells and the therapeutic effect on IDA rats, as well as the influence on gut microbiota in vivo. These results showed that in vitro, the uptake of FVP1-Fe(Ⅲ)was mediated by sodium-dependent glucose transporter-1(SGLT1)and facilitated glucose transporter-2(GLUT2)and GLUT2 played a dominant function. The multidrug resistance-associated protein-2(MRP-2)was involved in the efflux of FVP1-Fe(Ⅲ)across the Caco-2 cells. In vivo, FVP1-Fe(Ⅲ)had a better restorative effect on blood parameters and iron status indicators in rats with IDA as compared with FeSO_4 and exerted this effect by downregulating the expression of hepcidin. FVP1-Fe(Ⅲ)could also regulate gut microbiota dysbiosis in iron deficiency rats by returning the relative abundance of gut microbiota to the normal level. Besides, as a dietary factor, vitamin C(vit C)could enhance the therapeutic effect of FVP1-Fe(Ⅲ). These present findings showed that FVP1-Fe(Ⅲ)could be exploited as a novel iron supplement to treat IDA.展开更多
文摘Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.
文摘On the basis of previous studies dealing with the variation of major agronomic and yield characteristics of regenerated plants derived from single cell culture in vitro of common wheat (Triticum aestivum L.Cultivar NE 7742), the grain protein content and its fractions from regenerated plants with stable agronomic characteristics were studied from 1992 to 1995. The results showed that the variation of grain protein content and its fractions in somaclones from single cell culture in vitro were very significant and the range was very wide (11531770%). Several types of variation were found in the studies, especially the type with higher protein content than that of cultivar NE 7742 (non-culture parent). Among them, -2069% of lines the grain protein content was significantly higher than that of NE 7742 and combined with high yielding potential. The tendency of variation of the four protein fractions showed that the variation of albumin was not obvious and maintained the same level as NE774 increased in some somaclones and decreased in others. However, the percentages both globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and glutenin tended to increase. The variation of total amount of structural protein and the ratio between globulin and albumm was mainly influenced by globulin under the condition of culture in vitro. The variation of total amount of storage protein and the ratio between gliadin and glutenin was mainly affected by glutenin. The results mentioned above demonstrated that the induction and screening of somaclonal variation could be an effective way in wheat improvement in combining high protein content with high yield.
文摘Compared with 2D tumor cell culture, 3D tumor cell culture can better simulate the microenvironment of signal transduction between cells and extracellular matrix. As one of the best cell models in tumor research, it has been widely used in the study of cancer cell morphology, nanotechnology drug delivery system, and anticancer drug screening. The main theme of this paper is to review the previous research of 3D cell culture applying to tumors in vitro and the prospects for the applications of 3D cell culture system.
基金Supported by Research Grants ETT022/2006 and ETT151/2009 from the Ministry of Health,HungaryTáMOP-4.2.1/B-09/1/KONV-2010-0005 from Creating the Center of Excellence at the University of Szegedsupported by the European Union and cofinanced by the European Regional Fund
文摘AIM:The effects of vitamin D3 have been investigated on various tumors, including colorectal cancer (CRC). 25-hydroxyvitamin-D3-24-hydroxylase (CYP24A1), the enzyme that inactivates the active vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25-D3), is considered to be the main enzyme determining the biological halflife of 1,25-D3. During colorectal carcinogenesis, the expression and concentration of CYP24A1 increases significantly, suggesting that this phenomenon could be responsible for the proposed efficacy of 1,25-D3 in the treatment of CRC. The aim of this study was to investigate the anti-tumor effects of vitamin D3 on the human CRC cell line Caco-2 after inhibition of the cytochrome P450 component of CYP24A1 activity. METHODS:We examined the expression of CYP24A1 mRNA and the effects of 1,25-D3 on the cell line Caco-2 after inhibition of CYP24A1. Cell viability and proliferation were determined by means of sulforhodamine-B staining and bromodeoxyuridine incorporation, respectively, while cytotoxicity was estimated via the lactate dehydrogenase content of the cell culture supernatant. CYP24A1 expression was measured by realtime reverse transcription polymerase chain reaction. A number of tetralone compounds were synthesized to investigate their CP24A1 inhibitory activity. RESULTS:In response to 1,25-D3, CYP24A1 mRNA expression was enhanced significantly, in a time- and dose-dependent manner. Caco-2 cell viability and proliferation were not influenced by the administration of 1,25-D3 alone, but were markedly reduced by coadministration of 1,25-D3 and KD-35, a CYP24A1-inhibiting tetralone. Our data suggest that the mechanism of action of co-administered KD-35 and 1,25-D3 does not involve a direct cytotoxic effect, but rather the inhibition of cell proliferation. CONCLUSION:These findings demonstrate that the selective inhibition of CYP24A1 by compounds such as KD-35 may be a new approach for enhancement of the anti-tumor effect of 1,25-D3 on CRC.
基金Supported by the National Natural-Scientific Foundation,No.39500043
文摘INTRODUCTIONTo date ,the major therapy for rectal carcinoma is extensive abdomino-perineal resection[1]. Unfortunately ,after resection of rectal carcinoma ,many patients still die of blood-borne metastases ,usually in the liver or lungs ,or local prlvic recurrence[2,3],which is the major cause of morbidity and mortality in patients with rectal carcinoma .Pre-or postoperative radiotherapy can reduce the incidence of local rdcurrence[4-7].
文摘Microscope observations of normal human ke- ratinocytes (NHK) propagated in a serum-free medium reveal a high frequency (>70%) of pentagonally-shaped colonies over a wide range of colony sizes that persist over many sequential cell generations. NHK colonies derived from sin- gle cell isolates also display pentagonal symme- try as confirmed by a photographic technique known as “Markham Rotation”. The generality of pentagonal cellular morphology was extended to observations in situ of pentagonally-shaped basal layer epidermal cells of normal human epidermis, monolayer cultures of normal and immortalized keratinocytes, several different ch- ick embryo cells, and in previously published photographs. Statistical methods were applied that differentiate planar close-packing of polygonal configurations observed in living cellular system from several examples of non-living cellular aggregates that were produced spontaneously in nature or in the laboratory under defined physico-chemical conditions.
基金This research was financially supported by the Commis-sion of the European Communities,Framework 6,Prior-ity 5“Food Quality and Safety”,STREP Project Healthy Structuring(2006-023115).
文摘Presently, there is no clear consensus on the best approach to estimate carotenoid bioavailability. The best alternative would be to use human studies, but they are labour-intensive and expensive and can only be used to investigate a limited number of samples. Hence, a number of in vitro: models have been developed to study pre-absorptive processes and factors affecting bioavailability. The question is, however, how well the results obtained by the various methods correlate to each other and to the in vivo situation. In the present paper, we have compared in vivo data from two human studies on differently processed soups containing carrots, tomato and broccoli, with results obtained by in vitro characterisation of the same soups. In vitro bioaccessibility was estimated by a static in vitro digestion investigating matrix release and micellarization of carotenoids and by uptake studies in a human intestinal cell line (Caco-2). In vivo data was obtained from clinical studies measuring total plasma carotenoid concentrations in human subjects after 4 weeks daily consumption of the soups. Comparison of the in vitro and in vivo results indicate that the combination of a two-step in vitro digestion and Caco-2 cells seems to be a useful tool for estimation of β-carotene bioaccessibility and screening of factors governing the release of β-carotene from this type of food. For lycopene the in vitro and in vivo results were less consistent, suggesting that reliable prediction of lycopene bioavailability might be more problematic.
基金supported by the State key research and development plan “Modern food processing and food storage and transportation technology and equipment” (2017YFD0400203)。
文摘Iron deficiency anemia(IDA)is a common nutritional problem, but traditional iron supplements cause many adverse reactions. Thus, the development of a novel iron supplement might be significant for the treatment of IDA. This study aimed to study the transport mechanism of Flammulina velutipes polysaccharide-iron complex(FVP1-Fe(Ⅲ))in Caco-2 cells and the therapeutic effect on IDA rats, as well as the influence on gut microbiota in vivo. These results showed that in vitro, the uptake of FVP1-Fe(Ⅲ)was mediated by sodium-dependent glucose transporter-1(SGLT1)and facilitated glucose transporter-2(GLUT2)and GLUT2 played a dominant function. The multidrug resistance-associated protein-2(MRP-2)was involved in the efflux of FVP1-Fe(Ⅲ)across the Caco-2 cells. In vivo, FVP1-Fe(Ⅲ)had a better restorative effect on blood parameters and iron status indicators in rats with IDA as compared with FeSO_4 and exerted this effect by downregulating the expression of hepcidin. FVP1-Fe(Ⅲ)could also regulate gut microbiota dysbiosis in iron deficiency rats by returning the relative abundance of gut microbiota to the normal level. Besides, as a dietary factor, vitamin C(vit C)could enhance the therapeutic effect of FVP1-Fe(Ⅲ). These present findings showed that FVP1-Fe(Ⅲ)could be exploited as a novel iron supplement to treat IDA.