The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hyd...The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method.The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size,morphology,drug loading and EE,physical state of DP in the matrix and in vitro and in vivo release behavior.DP microspheres were prepared successfully with average diameter of 30m,drug loading of 15.92±0.31%and EE up to 78.79±2.56%.Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface.Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres.The Tg of PLGA was increased with the addition of DP.The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model,which suggested the diffusion governing release mechanism.After single-dose administration of DP microspheres via subcutaneous injection in rats,the plasma concentration of DP reached peak concentration at 0.50 d,and then declined gradually,but was still detectable at 15 d.A good correlation between in vitro and in vivo data was obtained.The results suggest the potential use of DP microspheres for treatment of Alzheimer’s disease over long periods.展开更多
To explore the structure-activity connections of amphiphilic permeation enhancers containing the length of the hydrophobic chains as well as the properties of the polar head,O-acylgeraniol and O-acylnerol derivatives ...To explore the structure-activity connections of amphiphilic permeation enhancers containing the length of the hydrophobic chains as well as the properties of the polar head,O-acylgeraniol and O-acylnerol derivatives were synthesized from geraniol/nerol(cis-isomer of geraniol) and pharmaceutical excipient acids in this research. Their promotion of the percutaneous absorption of three drugs as the model, flurbiprofen(FP), isosorbide dinitrate(ISDN) and donepezil(DNP), which were selected based on their physicochemical properties,was tested by in vitro skin penetration and in vivo. Molecular simulation, ATR-FTIR, CLSM and histological observation were implement to evaluate the mode of action of the enhancers.The results indicated that(E)-3,7-dimethyl-2,6-octadien-1-yl tetradecanoate(GER-C14, trans-)achieved the highest enhancement ability for the three drugs;additionally, the in vivo results obtained were in good correlation with the in vitro data. Molecular docking results suggested that enhancers loosen the hydrogen bonds between ceramides, and the results of molecular simulation indicated that GER-C14, NER-C14 could insert into the middle of the lipid bilayer to form an independent phase. According to ATR-FTIR and histological evaluation, the enhancers extracted lipids and influenced the protein region, thereby disturbing the skin array. In addition, CLSM described the dynamic effects of enhancers on lipids between stratum corneum(SC) cells. In conclusion, GER-C14 had a better penetration promotion effect, which broadened our understanding of stereoisomeric penetration enhancers.展开更多
The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins(PNS) with hydroxy propyl methyl cellulose(HPMC), chitosan, and chitosan : carbomer, explore the influence of dif...The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins(PNS) with hydroxy propyl methyl cellulose(HPMC), chitosan, and chitosan : carbomer, explore the influence of different bio-adhesive materials on pharmacokinetics behaviors of PNSbio-adhesive pellets, and evaluate the correlation between in vivo absorption and in vitro release(IVIVC). In order to predict the in vivo concentration-time profile by the in vitro release data of bio-adhesive pellets, the release experiment was performed using the rotating basket method in p H 6.8 phosphate buffer. The PNS concentrations in rat plasma were analyzed by HPLC-MS-MS method and the relative bioavailability and other pharmacokinetic parameters were estimated using Kinetica4.4 pharmacokinetic software. Numerical deconvolution method was used to evaluate IVIVC. Our results indicated that, compared with ordinary pellets, PNS bio-adhesive pellets showed increased oral bioavailability by 1.45 to 3.20 times, increased Cmax, and extended MRT. What's more, the release behavior of drug in HPMC pellets was shown to follow a Fickian diffusion mechanism, a synergetic function of diffusion and skeleton corrosion. The in vitro release and the in vivo biological activity had a good correlation, demonstrating that the PNS bio-adhesive pellets had a better sustained release. Numerical deconvolution technique showed the advantage in evaluation of IVIVC for self-designed bio-adhesive pellets with HPMC. In conclusion, the in vitro release data of bio-adhesive pellets with HPMC can predict its concentration-time profile in vivo.展开更多
Lipid-based formulations(LBFs)have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs.However,construction of in vitro and in vivo correlations(IVIVCs)for LBFs is quite chall...Lipid-based formulations(LBFs)have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs.However,construction of in vitro and in vivo correlations(IVIVCs)for LBFs is quite challenging,owing to a complex in vivo processing of these formulations.In this paper,we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption;based on the concept of IVIVCs,the current status of in vitro models to establish IVIVCs for LBFs is reviewed,while future perspectives in this field are discussed.In vitro tests,which facilitate the understanding and prediction of the in vivo performance of solid dosage forms,frequently fail to mimic the in vivo processing of LBFs,leading to inconsistent results.In vitro digestion models,which more closely simulate gastrointestinal physiology,are a more promising option.Despite some successes in IVIVC modeling,the accuracy and consistency of these models are yet to be validated,particularly for human data.A reliable IVIVC model can not only reduce the risk,time,and cost of formulation development but can also contribute to the formulation design and optimization,thus promoting the clinical translation of LBFs.展开更多
Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize...Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3 D structure of enteric coated pellets recovered from the gastrointestinal tract of rats.The structures of pellets in solid state and in vitro compendium media were measured.Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media.Thus,optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media.The sphericity,pellet volume,pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for2 h were recorded 0.47,1.55 × 10^(8)μm^(3),0.44 × 10^(8)μm^(3)and 27.6%,respectively.After adding pepsin and glass microspheres,the above parameters in vitro reached to 0.44,1.64 × 10^(8)μm^(3)0.38 × 10^(8)μm^(3)and 23.0%,respectively.Omeprazole magnesium pellets behaved similarly.The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3 D structures to ensure better design,characterization and quality control of advanced OSDF.展开更多
文摘The purpose of this study was to develop a PLGA microspheres-based donepezil(DP)formulation which was expected to sustain release of DP for one week with high encapsulation efficiency(EE).DP derived from donepezil hydrochloride was encapsulated in PLGA microspheres by the O/W emulsion-solvent evaporation method.The optimized formulation which avoided the crushing of microspheres during the preparation process was characterized in terms of particle size,morphology,drug loading and EE,physical state of DP in the matrix and in vitro and in vivo release behavior.DP microspheres were prepared successfully with average diameter of 30m,drug loading of 15.92±0.31%and EE up to 78.79±2.56%.Scanning electron microscope image showed it has integrated spherical shape with no drug crystal and porous on its surface.Differential scanning calorimetry and X-ray diffraction results suggested DP was in amorphous state or molecularly dispersed in microspheres.The Tg of PLGA was increased with the addition of DP.The release profile in vitro was characterized with slow but continuous release that lasted for about one week and fitted well with first-order model,which suggested the diffusion governing release mechanism.After single-dose administration of DP microspheres via subcutaneous injection in rats,the plasma concentration of DP reached peak concentration at 0.50 d,and then declined gradually,but was still detectable at 15 d.A good correlation between in vitro and in vivo data was obtained.The results suggest the potential use of DP microspheres for treatment of Alzheimer’s disease over long periods.
基金The Natural Science Foundation of Hebei Province [grant numbers H2019209254]North China University of Science and Technology Foundation for Distinguished Young Scholars[grant numbers JQ201713]Distinguished Young Scholars of Hebei Province。
文摘To explore the structure-activity connections of amphiphilic permeation enhancers containing the length of the hydrophobic chains as well as the properties of the polar head,O-acylgeraniol and O-acylnerol derivatives were synthesized from geraniol/nerol(cis-isomer of geraniol) and pharmaceutical excipient acids in this research. Their promotion of the percutaneous absorption of three drugs as the model, flurbiprofen(FP), isosorbide dinitrate(ISDN) and donepezil(DNP), which were selected based on their physicochemical properties,was tested by in vitro skin penetration and in vivo. Molecular simulation, ATR-FTIR, CLSM and histological observation were implement to evaluate the mode of action of the enhancers.The results indicated that(E)-3,7-dimethyl-2,6-octadien-1-yl tetradecanoate(GER-C14, trans-)achieved the highest enhancement ability for the three drugs;additionally, the in vivo results obtained were in good correlation with the in vitro data. Molecular docking results suggested that enhancers loosen the hydrogen bonds between ceramides, and the results of molecular simulation indicated that GER-C14, NER-C14 could insert into the middle of the lipid bilayer to form an independent phase. According to ATR-FTIR and histological evaluation, the enhancers extracted lipids and influenced the protein region, thereby disturbing the skin array. In addition, CLSM described the dynamic effects of enhancers on lipids between stratum corneum(SC) cells. In conclusion, GER-C14 had a better penetration promotion effect, which broadened our understanding of stereoisomeric penetration enhancers.
基金supported by the National Natural Science Foundation of China(No.81274094)
文摘The present study was designed to prepare and compare bio-adhesive pellets of panax notoginseng saponins(PNS) with hydroxy propyl methyl cellulose(HPMC), chitosan, and chitosan : carbomer, explore the influence of different bio-adhesive materials on pharmacokinetics behaviors of PNSbio-adhesive pellets, and evaluate the correlation between in vivo absorption and in vitro release(IVIVC). In order to predict the in vivo concentration-time profile by the in vitro release data of bio-adhesive pellets, the release experiment was performed using the rotating basket method in p H 6.8 phosphate buffer. The PNS concentrations in rat plasma were analyzed by HPLC-MS-MS method and the relative bioavailability and other pharmacokinetic parameters were estimated using Kinetica4.4 pharmacokinetic software. Numerical deconvolution method was used to evaluate IVIVC. Our results indicated that, compared with ordinary pellets, PNS bio-adhesive pellets showed increased oral bioavailability by 1.45 to 3.20 times, increased Cmax, and extended MRT. What's more, the release behavior of drug in HPMC pellets was shown to follow a Fickian diffusion mechanism, a synergetic function of diffusion and skeleton corrosion. The in vitro release and the in vivo biological activity had a good correlation, demonstrating that the PNS bio-adhesive pellets had a better sustained release. Numerical deconvolution technique showed the advantage in evaluation of IVIVC for self-designed bio-adhesive pellets with HPMC. In conclusion, the in vitro release data of bio-adhesive pellets with HPMC can predict its concentration-time profile in vivo.
基金supported by Science and Technology Commission of Shanghai Municipality(Nos.19430741400 and 19410761200,China)National Natural Science Foundation of China(Nos.81973247 and 81703434)
文摘Lipid-based formulations(LBFs)have demonstrated a great potential in enhancing the oral absorption of poorly water-soluble drugs.However,construction of in vitro and in vivo correlations(IVIVCs)for LBFs is quite challenging,owing to a complex in vivo processing of these formulations.In this paper,we start with a brief introduction on the gastrointestinal digestion of lipid/LBFs and its relation to enhanced oral drug absorption;based on the concept of IVIVCs,the current status of in vitro models to establish IVIVCs for LBFs is reviewed,while future perspectives in this field are discussed.In vitro tests,which facilitate the understanding and prediction of the in vivo performance of solid dosage forms,frequently fail to mimic the in vivo processing of LBFs,leading to inconsistent results.In vitro digestion models,which more closely simulate gastrointestinal physiology,are a more promising option.Despite some successes in IVIVC modeling,the accuracy and consistency of these models are yet to be validated,particularly for human data.A reliable IVIVC model can not only reduce the risk,time,and cost of formulation development but can also contribute to the formulation design and optimization,thus promoting the clinical translation of LBFs.
基金financial support from National Key R&D Program of China(2020YFE0201700)Major New Drugs Innovation and Development(2017ZX09101001-005,China)+1 种基金the National Natural Science Foundation of China(81803441,81803446 and 81773645)Youth Innovation Promotion Association CAS(2018323,China)。
文摘Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3 D structure of enteric coated pellets recovered from the gastrointestinal tract of rats.The structures of pellets in solid state and in vitro compendium media were measured.Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media.Thus,optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media.The sphericity,pellet volume,pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for2 h were recorded 0.47,1.55 × 10^(8)μm^(3),0.44 × 10^(8)μm^(3)and 27.6%,respectively.After adding pepsin and glass microspheres,the above parameters in vitro reached to 0.44,1.64 × 10^(8)μm^(3)0.38 × 10^(8)μm^(3)and 23.0%,respectively.Omeprazole magnesium pellets behaved similarly.The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3 D structures to ensure better design,characterization and quality control of advanced OSDF.