Experimental study of enhanced in-situ micro-ecological remediation of petroleum contaminated loess soil was carried out in Zhongyuan oil production areas, and the enhanced in-situ micro-ecological remediation techniq...Experimental study of enhanced in-situ micro-ecological remediation of petroleum contaminated loess soil was carried out in Zhongyuan oil production areas, and the enhanced in-situ micro-ecological remediation technique includes optimistic in-situ microbial communities, physical chemistry methods, alfalfa planting and regulation of soil environmental elements. Experiments showed that the oil content in the contaminated soil with oil content about 2 898.25 mg/kg can be reduced about 98.61% after in-situ micro-ecological remediation for 99 days, which demonstrated the effectiveness of in-situ micro-ecological remediation methods for petroleum contaminated soil in central plains of China, and explored the practical and feasible application of these methods.展开更多
Based on the laboratory experiments with the saltwater and freshwater replacing each other in the level sand column, taking the kaolin, illite, smectite, bivalent hydrargyrum ion (Hg^2+) and "phenol (C6H5OH) as ...Based on the laboratory experiments with the saltwater and freshwater replacing each other in the level sand column, taking the kaolin, illite, smectite, bivalent hydrargyrum ion (Hg^2+) and "phenol (C6H5OH) as examples, this paper studies the applications of water sensitivity in situ remediation in saltwater-freshwater transition zone. In the water sensitivity process, the release and migration of clay minerals can make the hydraulic conductivity (HC) decrease and pollutants remove. A new type of low penetrable or impenetrable purdah can be built by adding clay minerals into the sand media to replace the underground concrete impenetrable wall to prevent seawater intrusion, and a number of the heavy metals and organic pollutants in the sand media can be removed by in situ remediation. The results show that the content of kaolin and illite influences the water sensitivity process slightly, and HC of the sand columns descends from 0.011 cm/s to 0.001 4 cm/s and 0.001 2 cm/s respectively even if the content reaches 12% (weight ratio, sic passim). However, for smectite, HC descends sharply to about 1 × 10^-8 cm/s when its content reaches 4%, and no water can flow through the sand columns beyond 5%. The particle release and migration processes can remove the Hg^2+ and C6HsOH out of the sand columns efficiently, the removing rate of Hg^2+ is 31.68% when the freshwater and saltwater are filtered through the sand columns polluted by Hg^2+, while it is 67.55% when the water sensitivity occurs. With the same method, the removing rates of C6H5OH under the fluid flow and water sensitivity are 55.71% and 43.43% respectively.展开更多
In order to study the remediation technology and effect of the black-odour water bodies,the treatment project of typical black-odour river was taken as an example,and the technical measures,such as sediment dredging,a...In order to study the remediation technology and effect of the black-odour water bodies,the treatment project of typical black-odour river was taken as an example,and the technical measures,such as sediment dredging,aeration,adding microbial preparation and constructing ecological floating bed,were adopted to treat and restore the water body.The results showed that the black and odorous phenomenon of the river had been basically eliminated and the water quality had been significantly improved after the 9-week operation.The highest removal rates of COD,NH3-N and TP were 82.5%,77.6%and 81.4%,respectively,and the water quality was improved from inferior class V to class IV.The engineering practice indicated that the technical scheme was feasible and could effectively remove the pollutants such as organic matters,ammonia nitrogen and total phosphorus in the water,which could provide basis and reference for the treatment project of similar black-odour water body.展开更多
The effectiveness of an injection-based remediation strategy is primarily governed by accurate understanding of reagent delivery and ensuring uniform distribution within the reactive zone. In IRZ (in situ reactive z...The effectiveness of an injection-based remediation strategy is primarily governed by accurate understanding of reagent delivery and ensuring uniform distribution within the reactive zone. In IRZ (in situ reactive zone) design, the required reagent strength, injection volumes, injection rates, injection frequency, injection and monitoring well spacing, and the cost and time to achieve remediation goals are governed by the hydrogeology of the site. A properly designed tracer test is capable of providing critical above mentioned site-specific information, to assist with full scale design of an IRZ. This paper describes that implementing tracer testing to support remedial design can result in enhanced design efficiency, added assurance in full-scale implementation and ultimately resulted in substantial cost savings. Therefore, it is recommended that the broader practitioner community adopt this technique as a best practice for effective and optimum in situ remediation system design.展开更多
Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied t...Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied to the photocatalytic degradation of methylene blue(MB)under visible light irradiation.Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as‐prepared composites.Results show that the specific surface area of the PPy/g‐C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g‐C3N4 surface.Owing to the strong conductivity,the PPy can be used as a transition channel for electrons to move onto the g‐C3N4 surface,thus inhibiting the recombination of photogenerated carriers of g‐C3N4 and improving the photocatalytic performance.The elevated light adsorption of PPy/g‐C3N4 composites is attributed to the strong absorption coefficient of PPy.The composite containing 0.75 wt%PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g‐C3N4 in 2 h.Moreover,the degradation kinetics follow a pseudo‐first‐order model.A detailed photocatalytic mechanism is proposed with·OH and·O2-radicals as the main reactive species.The present work provides new insights into the mechanistic understanding of PPy in PPy/g‐C3N4 composites for environmental applications.展开更多
In order to protect ecological environment,it is urgent to restore the polluted environment. Among traditional methods of environmental remediation,it is common to add excessive electron donors or electron acceptors t...In order to protect ecological environment,it is urgent to restore the polluted environment. Among traditional methods of environmental remediation,it is common to add excessive electron donors or electron acceptors to the polluted environment,but these methods have a high cost and can cause secondary pollution easily. Microbial fuel cells( MFCs) can realize the transformation of pollutants and collection of electric energy by using microorganisms as a catalyst; they are clean,efficient and controlled easily and have a wide range of application,so MFCs have wide application prospects in the field of environmental remediation. In this study,MFCs and their applications in the field of environmental remediation were summarized.展开更多
To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apati...To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.During metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption. This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to take up Pb2+,Zn+2 and Mn+2.The first is (ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is (dissolution- precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral.展开更多
The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, ana...The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, anaerobic and aerobic bioremediation, and adsorption, among others. One requirement for the successful application of these technologies is the delivery of the remedial reagent(s) to the compounds of concern. A rapidly evolving <em>in situ</em> technology is the injection of adsorptive media such as activated carbon and ion-exchange resin including powdered or colloidal activated carbon. Activated carbon has a long-demonstrated history of effectiveness for the removal of various organic and inorganic compounds in above ground water treatment systems. However, due to constraints related to the particle size and physical properties of the activated carbon, the <em>in situ</em> application of activated carbon has been limited. Recent developments in the manufacturing of activated carbon have created a smaller particle size allowing activated carbon to be applied <em>in situ</em>. To evaluate if powdered and colloidal activated carbon can be effectively distributed in aquifers, the two types of carbon were injected using direct push technology adjacent to each other at four sites with varying geology. Evaluation of distribution was completed by sampling the aquifer prior to and post-injection for total organic carbon. The results of the studies indicated that both forms of activated carbon were effectively delivered to the targeted injection zones with both carbon types being detected at least seven meters away from the point of injection. The colloidal form of the activated carbon showed good distribution throughout the four targeted zones of injection with 93 percent of the samples collected having colloidal activated carbon present within them whereas the powdered activated carbon cells were more susceptible to aquifer heterogeneity with only 67 percent of the samples collected having activated carbon present. Preferential accumulation of activated carbon was observed in high horizontal hydraulic conductivity seams, especially within the powdered activated carbon cells. These results suggested that the powdered form of activated carbon was more suspectable at the four sites to heterogeneity within the aquifer than the colloidal form of activated carbon. Sampling of monitoring well screens installed prior to the injection of the two forms of activated carbon showed preferential accumulation of powdered activated carbon within the sand pack, which could result in sampling bias.展开更多
基金financed by the international cooperation project of Ministry of Science and Technology (2005DFA90200)the mine environment management project of Henan Provincial Department of Land and Resources+1 种基金the basic scientific research project fund of Chinese Academy of Geological Sciences (YYWF201519)China Geology Survey Work Program (121201106000150006)
文摘Experimental study of enhanced in-situ micro-ecological remediation of petroleum contaminated loess soil was carried out in Zhongyuan oil production areas, and the enhanced in-situ micro-ecological remediation technique includes optimistic in-situ microbial communities, physical chemistry methods, alfalfa planting and regulation of soil environmental elements. Experiments showed that the oil content in the contaminated soil with oil content about 2 898.25 mg/kg can be reduced about 98.61% after in-situ micro-ecological remediation for 99 days, which demonstrated the effectiveness of in-situ micro-ecological remediation methods for petroleum contaminated soil in central plains of China, and explored the practical and feasible application of these methods.
基金Supported by National Natural Science Foundation of China (No.40572142)
文摘Based on the laboratory experiments with the saltwater and freshwater replacing each other in the level sand column, taking the kaolin, illite, smectite, bivalent hydrargyrum ion (Hg^2+) and "phenol (C6H5OH) as examples, this paper studies the applications of water sensitivity in situ remediation in saltwater-freshwater transition zone. In the water sensitivity process, the release and migration of clay minerals can make the hydraulic conductivity (HC) decrease and pollutants remove. A new type of low penetrable or impenetrable purdah can be built by adding clay minerals into the sand media to replace the underground concrete impenetrable wall to prevent seawater intrusion, and a number of the heavy metals and organic pollutants in the sand media can be removed by in situ remediation. The results show that the content of kaolin and illite influences the water sensitivity process slightly, and HC of the sand columns descends from 0.011 cm/s to 0.001 4 cm/s and 0.001 2 cm/s respectively even if the content reaches 12% (weight ratio, sic passim). However, for smectite, HC descends sharply to about 1 × 10^-8 cm/s when its content reaches 4%, and no water can flow through the sand columns beyond 5%. The particle release and migration processes can remove the Hg^2+ and C6HsOH out of the sand columns efficiently, the removing rate of Hg^2+ is 31.68% when the freshwater and saltwater are filtered through the sand columns polluted by Hg^2+, while it is 67.55% when the water sensitivity occurs. With the same method, the removing rates of C6H5OH under the fluid flow and water sensitivity are 55.71% and 43.43% respectively.
基金supported by the Scientific Research Fund from the Zhenjiang Science and Technology Administration Bureau(Grant No.SH2018022)the Qing Lan Project of the Jiangsu Provincial Education Department(Grant No.2016).
文摘In order to study the remediation technology and effect of the black-odour water bodies,the treatment project of typical black-odour river was taken as an example,and the technical measures,such as sediment dredging,aeration,adding microbial preparation and constructing ecological floating bed,were adopted to treat and restore the water body.The results showed that the black and odorous phenomenon of the river had been basically eliminated and the water quality had been significantly improved after the 9-week operation.The highest removal rates of COD,NH3-N and TP were 82.5%,77.6%and 81.4%,respectively,and the water quality was improved from inferior class V to class IV.The engineering practice indicated that the technical scheme was feasible and could effectively remove the pollutants such as organic matters,ammonia nitrogen and total phosphorus in the water,which could provide basis and reference for the treatment project of similar black-odour water body.
文摘The effectiveness of an injection-based remediation strategy is primarily governed by accurate understanding of reagent delivery and ensuring uniform distribution within the reactive zone. In IRZ (in situ reactive zone) design, the required reagent strength, injection volumes, injection rates, injection frequency, injection and monitoring well spacing, and the cost and time to achieve remediation goals are governed by the hydrogeology of the site. A properly designed tracer test is capable of providing critical above mentioned site-specific information, to assist with full scale design of an IRZ. This paper describes that implementing tracer testing to support remedial design can result in enhanced design efficiency, added assurance in full-scale implementation and ultimately resulted in substantial cost savings. Therefore, it is recommended that the broader practitioner community adopt this technique as a best practice for effective and optimum in situ remediation system design.
文摘Polypyrrole‐modified graphitic carbon nitride composites(PPy/g‐C3N4)are fabricated using an in‐situ polymerization method to improve the visible light photocatalytic activity of g‐C3N4.The PPy/g‐C3N4 is applied to the photocatalytic degradation of methylene blue(MB)under visible light irradiation.Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as‐prepared composites.Results show that the specific surface area of the PPy/g‐C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g‐C3N4 surface.Owing to the strong conductivity,the PPy can be used as a transition channel for electrons to move onto the g‐C3N4 surface,thus inhibiting the recombination of photogenerated carriers of g‐C3N4 and improving the photocatalytic performance.The elevated light adsorption of PPy/g‐C3N4 composites is attributed to the strong absorption coefficient of PPy.The composite containing 0.75 wt%PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g‐C3N4 in 2 h.Moreover,the degradation kinetics follow a pseudo‐first‐order model.A detailed photocatalytic mechanism is proposed with·OH and·O2-radicals as the main reactive species.The present work provides new insights into the mechanistic understanding of PPy in PPy/g‐C3N4 composites for environmental applications.
基金Supported by Shandong Higher Education Institution Science And Technology Plan Project(J16LD03)Doctoral Scientific Research Foundation of Binzhou University(2014Y17)Shandong Key Research and Development Plan(2015GNC111018,2016GSF117021)
文摘In order to protect ecological environment,it is urgent to restore the polluted environment. Among traditional methods of environmental remediation,it is common to add excessive electron donors or electron acceptors to the polluted environment,but these methods have a high cost and can cause secondary pollution easily. Microbial fuel cells( MFCs) can realize the transformation of pollutants and collection of electric energy by using microorganisms as a catalyst; they are clean,efficient and controlled easily and have a wide range of application,so MFCs have wide application prospects in the field of environmental remediation. In this study,MFCs and their applications in the field of environmental remediation were summarized.
文摘To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.During metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption. This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to take up Pb2+,Zn+2 and Mn+2.The first is (ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is (dissolution- precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral.
文摘The use of <em>in situ</em> technologies for the treatment of groundwater containing various compounds of concern are widely accepted. These technologies include chemical reduction, chemical oxidation, anaerobic and aerobic bioremediation, and adsorption, among others. One requirement for the successful application of these technologies is the delivery of the remedial reagent(s) to the compounds of concern. A rapidly evolving <em>in situ</em> technology is the injection of adsorptive media such as activated carbon and ion-exchange resin including powdered or colloidal activated carbon. Activated carbon has a long-demonstrated history of effectiveness for the removal of various organic and inorganic compounds in above ground water treatment systems. However, due to constraints related to the particle size and physical properties of the activated carbon, the <em>in situ</em> application of activated carbon has been limited. Recent developments in the manufacturing of activated carbon have created a smaller particle size allowing activated carbon to be applied <em>in situ</em>. To evaluate if powdered and colloidal activated carbon can be effectively distributed in aquifers, the two types of carbon were injected using direct push technology adjacent to each other at four sites with varying geology. Evaluation of distribution was completed by sampling the aquifer prior to and post-injection for total organic carbon. The results of the studies indicated that both forms of activated carbon were effectively delivered to the targeted injection zones with both carbon types being detected at least seven meters away from the point of injection. The colloidal form of the activated carbon showed good distribution throughout the four targeted zones of injection with 93 percent of the samples collected having colloidal activated carbon present within them whereas the powdered activated carbon cells were more susceptible to aquifer heterogeneity with only 67 percent of the samples collected having activated carbon present. Preferential accumulation of activated carbon was observed in high horizontal hydraulic conductivity seams, especially within the powdered activated carbon cells. These results suggested that the powdered form of activated carbon was more suspectable at the four sites to heterogeneity within the aquifer than the colloidal form of activated carbon. Sampling of monitoring well screens installed prior to the injection of the two forms of activated carbon showed preferential accumulation of powdered activated carbon within the sand pack, which could result in sampling bias.