Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band...Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band at 3700 cm^-1 in four experimental configurations showed that orientational motion of water molecule at air/water interface is libratory within a limited angular range. The free OH bond of the interracial water molecule is tilted around 33°from the interface normal and the orientational distribution or motion width is less than 15°. This picture is significantly different from the previous conclusion that the interracial water molecule orientation varies over a broad range within the ultrafast vibrational relaxation time, the only direct experimental study concluded for ultrafast and broad orient, ational motion of a liquid interface by Wei et al. (Phys. Rev. Lett. 86, 4799, (2001)) using single SFG experimental configuration.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has...A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected in an experiment in the Northern Huanghai Sea is used to correct the three sonic anemometer measurements of turbulent wind for buoy motion. The effective removal of wave-scale motion from the spectra and cospectra are demonstrated. Estimates of along-wind momentum flux, sensible heat flux and latent heat flux calculated by the eddy correlation method based on data obtained by sonic anemometer 81000V are shown to be in the same trend and scale with those determined by the bulk aerodynamic method after motion correction. The motion correction not only greatly improve the estimation of the momentum flux but also has a great impact on the calculated sensible heat flux.展开更多
In the cotton factories ginning process bales of raw cotton in cotton tube transporting through the air has written in the article. As a result, cotton with cotton in the air separated by a separator device with air t...In the cotton factories ginning process bales of raw cotton in cotton tube transporting through the air has written in the article. As a result, cotton with cotton in the air separated by a separator device with air traffic, has an important theoretical study. First of all, the air flow that affects the dynamic pressure and laws is based on the model established in this study and the results are obtained.展开更多
The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the f...The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it.展开更多
In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmosphe...In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data, especially regarding turbulence. In this study, four-layer gradient meteorological observation data and one-layer, 10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China. The results show that, with the passage of a cold air front, the wind speed exhibits low-frequency variations and that the wind systematically descends. During the strong wind period, the wind speed increases with height in the surface layer. Regular gust packets are superimposed on the basic strong wind flow. Before the passage of cold air, the wind gusts exhibit a coherent structure. The wind and turbulent momentum fluxes are small, although the gusty wind momentum flux is slightly larger than the turbulent momentum flux. However, during the invasion of cold air, both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed, and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period. After the cold air invasion, this structure almost disappears.展开更多
An air damper possesses the advantages that there are no long term changes in the damping properties, there is no dependence on working temperature and additionally, it has less manufacturing and maintenance costs. As...An air damper possesses the advantages that there are no long term changes in the damping properties, there is no dependence on working temperature and additionally, it has less manufacturing and maintenance costs. As such, an air damper has been designed and developed based on the Maxwell type model concept in the approach of Nishihara and Asami [1]. The cylinder-piston and air-tank type damper characteristics such as air damping ratio and air spring rate have been studied by changing the length and diameter of the capillary pipe between the air cylinder and the air tank, operating air pressure and the air tank volume. A SDOF quarter-car vehicle suspension system using the developed air enclosed cylinder-piston and air-tank type damper has been analyzed for its motion transmissibility characteristics. Optimal values of the air damping ratio at various values of air spring rate have been determined for minimum motion transmissibility of the sprung mass. An experimental setup has been developed for SDOF quarter-car suspension system model using the developed air enclosed cylinder-piston and air-tank type damper to determine the motion transmissibility characteristics of the sprung mass. An attendant air pressure control system has been designed to vary air damping in the developed air damper. The results of the theoretical analysis have been compared with the experimental analysis.展开更多
In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorbe...In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the展开更多
基金This work was supported by Chines Academy of Scieuces(No.CMS-cx200305),National Natural Science Foundation of China(NSFC No.20425309,No.20573117)and Chinese Ministry of Science and Technology (M0ST No.G1999075305).
文摘Here we report a quantitative study of the orientational structure and motion of water molecule at the air/water interface. Analysis of Sum Frequency Generation (SFG) vibrational peak of the free O-H stretching band at 3700 cm^-1 in four experimental configurations showed that orientational motion of water molecule at air/water interface is libratory within a limited angular range. The free OH bond of the interracial water molecule is tilted around 33°from the interface normal and the orientational distribution or motion width is less than 15°. This picture is significantly different from the previous conclusion that the interracial water molecule orientation varies over a broad range within the ultrafast vibrational relaxation time, the only direct experimental study concluded for ultrafast and broad orient, ational motion of a liquid interface by Wei et al. (Phys. Rev. Lett. 86, 4799, (2001)) using single SFG experimental configuration.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.
基金The National Basic Research Program of China under contract No. 2011CB403501the Fund for Creative Research Groups by NSFC of China under contract No. 40821004+1 种基金the Knowledge Innovation Programs of the Chinese Academy of Sciences under contract No. KZCX2-YW-Q07-02the High-Tech Research and Development Program (863 Program) of China under contract No. 2006AA09A309
文摘A flux system deployed on a moored buoy has been described, which is capable of directly estimating the airsea fluxes after removing the contamination in the signal due to buoy motion. A triple loop fitting method has been demonstrated for determining the three angular offsets between measurement axes of the sonic anemometer and motion pack. The data collected in an experiment in the Northern Huanghai Sea is used to correct the three sonic anemometer measurements of turbulent wind for buoy motion. The effective removal of wave-scale motion from the spectra and cospectra are demonstrated. Estimates of along-wind momentum flux, sensible heat flux and latent heat flux calculated by the eddy correlation method based on data obtained by sonic anemometer 81000V are shown to be in the same trend and scale with those determined by the bulk aerodynamic method after motion correction. The motion correction not only greatly improve the estimation of the momentum flux but also has a great impact on the calculated sensible heat flux.
文摘In the cotton factories ginning process bales of raw cotton in cotton tube transporting through the air has written in the article. As a result, cotton with cotton in the air separated by a separator device with air traffic, has an important theoretical study. First of all, the air flow that affects the dynamic pressure and laws is based on the model established in this study and the results are obtained.
文摘The relative characteristics of motion of the fuel and shell upon launching is analyzed. By means of mechanical analysis and calculation, it is proposed that relative motion exists not only in the ranges between the fuel and shell of the warhead, but also in the fuel in different positions. The result of study indicates that the position of the fuel in the warhead has a marked influence on the relative motion, while the frictional coefficient between the fuel and shell has less influence upon it.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40965001 and 40875008)the open project of State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No.2009LASW-A02)
文摘In southern China, cold air is a common weather process during the winter season; it can cause strong wind, sharp temperature decreases, and even the snow or freezing rain events. However, the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data, especially regarding turbulence. In this study, four-layer gradient meteorological observation data and one-layer, 10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China. The results show that, with the passage of a cold air front, the wind speed exhibits low-frequency variations and that the wind systematically descends. During the strong wind period, the wind speed increases with height in the surface layer. Regular gust packets are superimposed on the basic strong wind flow. Before the passage of cold air, the wind gusts exhibit a coherent structure. The wind and turbulent momentum fluxes are small, although the gusty wind momentum flux is slightly larger than the turbulent momentum flux. However, during the invasion of cold air, both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed, and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period. After the cold air invasion, this structure almost disappears.
文摘An air damper possesses the advantages that there are no long term changes in the damping properties, there is no dependence on working temperature and additionally, it has less manufacturing and maintenance costs. As such, an air damper has been designed and developed based on the Maxwell type model concept in the approach of Nishihara and Asami [1]. The cylinder-piston and air-tank type damper characteristics such as air damping ratio and air spring rate have been studied by changing the length and diameter of the capillary pipe between the air cylinder and the air tank, operating air pressure and the air tank volume. A SDOF quarter-car vehicle suspension system using the developed air enclosed cylinder-piston and air-tank type damper has been analyzed for its motion transmissibility characteristics. Optimal values of the air damping ratio at various values of air spring rate have been determined for minimum motion transmissibility of the sprung mass. An experimental setup has been developed for SDOF quarter-car suspension system model using the developed air enclosed cylinder-piston and air-tank type damper to determine the motion transmissibility characteristics of the sprung mass. An attendant air pressure control system has been designed to vary air damping in the developed air damper. The results of the theoretical analysis have been compared with the experimental analysis.
文摘In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the