Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results s...Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration.展开更多
Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performanc...Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performance becomes an urgent issue to be solved.In this paper,a GCI engine model was built to investigate the effects of internal EGR(i-EGR)and pre-injection on in-cylinder temperature,spatial concentration of mixture and OH radical,combustion and emission characteristics,and the control strategy for improving the combustion performance was further explored.The results showed an obvious expansion of the zone with an equivalence ratio between 0.8∼1.2 is realized by higher pre-injection ratios,and the s decreases with the increase of pre-injection ratio,but increases with the increase of i-EGR ratio.The high overlap among the equivalentmixture zone,the hightemperature zone,and the OH radical-rich zone can be achieved by higher i-EGR ratio coupled with higher preinjection ratio.By increasing the pre-injection ratio,the combustion efficiency increases first and then decreases,also achieves the peak value with a pre-injection ratio of 60%and is unaffected by i-EGR.The emissions of CO,HC,NOX,and soot can also be reduced to low levels by the combination of higher i-EGR ratios and a pre-injection ratio of 60%.展开更多
Gasoline compression ignition (GCI) is one of the most promising combustion concepts to maintain low pollutant emissions and high efficiency. However, low load combustion stability and firing in cold-start operations ...Gasoline compression ignition (GCI) is one of the most promising combustion concepts to maintain low pollutant emissions and high efficiency. However, low load combustion stability and firing in cold-start operations are two major challenges for GCI combustion. Strategies including negative valve overlap (NVO), advanced injection strategies, fuel reforming, and intake preheating have been proposed in order to solve these difficulties;however, the cold start is still an obstacle. The objective of this work is to study effective methods to achieve GCI engine cold start-up. This work combines NVO, in-cylinder fuel reforming, and intake preheating to achieve quick firing under cold-start conditions and the subsequent warmup conditions. The results show that start of injection (SOI) during the intake stroke yields the best fuel economy, and injection during the compression stroke has the potential to extend the low load limit. Furthermore, SOI during the NVO period grants the ability to operate under engine conditions with cold intake air and coolant. With highly reactive products made by in-cylinder fuel reforming and fast heat accumulation in the combustion chamber, the NVO injection strategy is highly appropriate for GCI firing. An additional assisted technical method, such as intake preheating, is required to ignite the first firing cycle for a cold-start process. With the combination of NVO, in-cylinder fuel reforming, and intake preheating, the GCI engine successfully started within five combustion cycles in the experiment. After the firing process, the engine could stably operate without further intake preheating;thus, this method is appropriate for engine cold-start and warm-up.展开更多
Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hyd...Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.展开更多
Under high-temperature batch fluidized bed conditions and by employing juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cy...Under high-temperature batch fluidized bed conditions and by employing juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion of coal.In addition,the variations taking place in the surface functional groups of coal under different reaction times were investigated,and the variations achieved by the gas released under the pyrolysis and combustion of Juye coal were analyzed.As revealed from the results,the carbon conversion ratio and rate were elevated significantly,and the volume fraction of the outlet CO_(2)remained more than 92%under the oxygen carriers.The optimized reaction conditions to achieve the chemical looping combustion of Juye coal consisted of a temperature of 900℃,an OC/C ratio of 2,as well as a steam flow rate of 0.5 g·min^(-1).When the coal was undergoing the chemical looping combustion,volatiles primarily originated from the pyrolysis of aliphatic-CH_(3)and-CH_(2),and CO and H_(2)were largely generated from the gasification of aromatic carbon.In the CLC process,H_(2)O and CO_(2)began to separate out at 270℃,CH4 and tar began to precipitate at 370℃,and the amount of CO_(2)was continuously elevated with the rise of the temperature.展开更多
Recycle of plastic waste is an indisputable means to alleviate both environment and energy crisis.In this work,effects of heating condition on polyethylene behaviors in nitrogen and air were studied.It was observed th...Recycle of plastic waste is an indisputable means to alleviate both environment and energy crisis.In this work,effects of heating condition on polyethylene behaviors in nitrogen and air were studied.It was observed that polyethylene behavior was a single step in nitrogen,while the multiple steps occurred in air.According to the weight loss and heat flow curves,polyethylene behaviors in air were divided into three regions:low-temperature(<340 ℃),middle-temperature(340 – 380 ℃) and high-temperature(> 380 ℃) regions.Kinetic analysis revealed that the partial oxidization took the dominance in the low-temperature region,which seldom formed CO and CO_(2);the combustion took the dominance in the middle-temperature region,which was positive to the formation of CO and CO_(2);the pyrolysis was initiated and enhanced in the high-temperature region,which inhibited the formation of CO and CO;.According to the kinetic simulation,a synergistic effect between the pyrolysis and combustion was proposed to account for the acceleration of polyethylene conversion.This work may provide useful information about polyethylene behaviors under heating condition,and help to design and optimize plastic waste incineration process.展开更多
为了认识稠油开发过程中低温氧化与高温氧化阶段原油变化规律,利用静态氧化釜开展稠油的高低温氧化实验,借助傅里叶变换离子回旋共振质谱分析技术对高低温氧化前后的原油分子量及O、N、S杂原子化合物特征开展研究,结果表明:原油低温氧...为了认识稠油开发过程中低温氧化与高温氧化阶段原油变化规律,利用静态氧化釜开展稠油的高低温氧化实验,借助傅里叶变换离子回旋共振质谱分析技术对高低温氧化前后的原油分子量及O、N、S杂原子化合物特征开展研究,结果表明:原油低温氧化阶段分子量分布特征与原样相似,相对分子量分布范围在200~750,整体呈平缓状单峰型分布,高温氧化阶段分子量分布范围前移,呈明显的前峰单峰型分布;杂原子化合物中的O元素在低温氧化阶段主要以无环的饱和二元酸形式存在,在高温氧化阶段受环化、芳构化及脱甲基作用的影响,伴随着侧链烷基及杂原子基团的断裂和芳构化过程,造成原油中杂原子化合物向着碳数更小、双键当量(double bond equivalents,DBE)值更低的方向演化。该研究探索了温度与原油结构及化学组成之间的关系,对于指导稠油开发现场具有重要意义。展开更多
In this extensive investigation,the impact of borax decahydrate as a fuel additive in a diesel single-cylinder engine was rigorously examined.Borax decahydrate was introduced at concentrations of 5,15,25 and 35 g in 5...In this extensive investigation,the impact of borax decahydrate as a fuel additive in a diesel single-cylinder engine was rigorously examined.Borax decahydrate was introduced at concentrations of 5,15,25 and 35 g in 500 ml of biodiesel,forming five unique fuel mixtures with conventional diesel:90%diesel+10%spirulina biodiesel(SB10),SB10+1 g borax decahydrate(SB10B1),SB10+3 g borax decahydrate(SB10B3),SB10+5 g borax decahydrate(SB10B5)and SB10+7 g borax decahydrate(SB10B7).The investigation encompassed four diverse loading conditions and yielded insightful findings.Notably,at full load,SB10B3 exhibited a higher cylinder peak pressure than diesel,reaching 69.25 bar.Heat release rate profiles demonstrated superior efficiency for SB10 at 50%load,with a cumulative heat release rate of 950 J/°CA,which is lower than the 1050 J/°CA of diesel.Knock intensity(KI)evaluations revealed that,although SB10 and SB10B1 exhibited higher KI than diesel at full load due to elevated peak pressure,SB10B7 showed no knocking across all loads,indicative of reduced in-cylinder combustion.This meticulous numerical analysis emphasizes the potential of borax decahydrate as a catalyst and enhancer,providing valuable insights into the combustion dynamics of these alternative fuel blends and their viability for sustainable and efficient engine performance.In summary,out of all the blends,SB10B3 could be a potential diesel fuel replacement fuel for compression-ignition engines.展开更多
文摘Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration.
基金sponsored by the projects of National Natural Science Foundation of China (Grant Nos.51806127 and 52075307)Key Research and Development Program of Shandong Province (Grant No.2019GHZ016).
文摘Gasoline compression ignition(GCI)has been considered as a promising combustion concept to yield ultralow NOX and soot emissions while maintaining high thermal efficiency.However,how to improve the low-load performance becomes an urgent issue to be solved.In this paper,a GCI engine model was built to investigate the effects of internal EGR(i-EGR)and pre-injection on in-cylinder temperature,spatial concentration of mixture and OH radical,combustion and emission characteristics,and the control strategy for improving the combustion performance was further explored.The results showed an obvious expansion of the zone with an equivalence ratio between 0.8∼1.2 is realized by higher pre-injection ratios,and the s decreases with the increase of pre-injection ratio,but increases with the increase of i-EGR ratio.The high overlap among the equivalentmixture zone,the hightemperature zone,and the OH radical-rich zone can be achieved by higher i-EGR ratio coupled with higher preinjection ratio.By increasing the pre-injection ratio,the combustion efficiency increases first and then decreases,also achieves the peak value with a pre-injection ratio of 60%and is unaffected by i-EGR.The emissions of CO,HC,NOX,and soot can also be reduced to low levels by the combination of higher i-EGR ratios and a pre-injection ratio of 60%.
基金the National Natural Science Foundation of China (91641203, 51476114, and 91741119)he National Key Research and Development Program of China (2017YFB0103400).
文摘Gasoline compression ignition (GCI) is one of the most promising combustion concepts to maintain low pollutant emissions and high efficiency. However, low load combustion stability and firing in cold-start operations are two major challenges for GCI combustion. Strategies including negative valve overlap (NVO), advanced injection strategies, fuel reforming, and intake preheating have been proposed in order to solve these difficulties;however, the cold start is still an obstacle. The objective of this work is to study effective methods to achieve GCI engine cold start-up. This work combines NVO, in-cylinder fuel reforming, and intake preheating to achieve quick firing under cold-start conditions and the subsequent warmup conditions. The results show that start of injection (SOI) during the intake stroke yields the best fuel economy, and injection during the compression stroke has the potential to extend the low load limit. Furthermore, SOI during the NVO period grants the ability to operate under engine conditions with cold intake air and coolant. With highly reactive products made by in-cylinder fuel reforming and fast heat accumulation in the combustion chamber, the NVO injection strategy is highly appropriate for GCI firing. An additional assisted technical method, such as intake preheating, is required to ignite the first firing cycle for a cold-start process. With the combination of NVO, in-cylinder fuel reforming, and intake preheating, the GCI engine successfully started within five combustion cycles in the experiment. After the firing process, the engine could stably operate without further intake preheating;thus, this method is appropriate for engine cold-start and warm-up.
基金Funded by the National Natural Science Foundation of China(Nos.51132010 and 51272222)the Programs for Science and Technology Development of Yantai City,Shandong Province,China(No.2012ZH249)
文摘Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.
基金support from the National Key Research and Development Program of China(2018YFB06050401)Key Research and Development Program of the Ningxia Hui Autonomous Region(2018BCE01002)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2019-KF30,2019-KF33)。
文摘Under high-temperature batch fluidized bed conditions and by employing juye coal as the raw material,the present study determined the effects of the bed material,temperature,OC/C ratio,steam flow and oxygen carrier cycle on the chemical looping combustion of coal.In addition,the variations taking place in the surface functional groups of coal under different reaction times were investigated,and the variations achieved by the gas released under the pyrolysis and combustion of Juye coal were analyzed.As revealed from the results,the carbon conversion ratio and rate were elevated significantly,and the volume fraction of the outlet CO_(2)remained more than 92%under the oxygen carriers.The optimized reaction conditions to achieve the chemical looping combustion of Juye coal consisted of a temperature of 900℃,an OC/C ratio of 2,as well as a steam flow rate of 0.5 g·min^(-1).When the coal was undergoing the chemical looping combustion,volatiles primarily originated from the pyrolysis of aliphatic-CH_(3)and-CH_(2),and CO and H_(2)were largely generated from the gasification of aromatic carbon.In the CLC process,H_(2)O and CO_(2)began to separate out at 270℃,CH4 and tar began to precipitate at 370℃,and the amount of CO_(2)was continuously elevated with the rise of the temperature.
基金the financial support from the National Natural Science Foundation of China (Grant No.21908010)the Jilin Provincial Department of Science and Technology (Grant No.20200201095JC)
文摘Recycle of plastic waste is an indisputable means to alleviate both environment and energy crisis.In this work,effects of heating condition on polyethylene behaviors in nitrogen and air were studied.It was observed that polyethylene behavior was a single step in nitrogen,while the multiple steps occurred in air.According to the weight loss and heat flow curves,polyethylene behaviors in air were divided into three regions:low-temperature(<340 ℃),middle-temperature(340 – 380 ℃) and high-temperature(> 380 ℃) regions.Kinetic analysis revealed that the partial oxidization took the dominance in the low-temperature region,which seldom formed CO and CO_(2);the combustion took the dominance in the middle-temperature region,which was positive to the formation of CO and CO_(2);the pyrolysis was initiated and enhanced in the high-temperature region,which inhibited the formation of CO and CO;.According to the kinetic simulation,a synergistic effect between the pyrolysis and combustion was proposed to account for the acceleration of polyethylene conversion.This work may provide useful information about polyethylene behaviors under heating condition,and help to design and optimize plastic waste incineration process.
文摘为了认识稠油开发过程中低温氧化与高温氧化阶段原油变化规律,利用静态氧化釜开展稠油的高低温氧化实验,借助傅里叶变换离子回旋共振质谱分析技术对高低温氧化前后的原油分子量及O、N、S杂原子化合物特征开展研究,结果表明:原油低温氧化阶段分子量分布特征与原样相似,相对分子量分布范围在200~750,整体呈平缓状单峰型分布,高温氧化阶段分子量分布范围前移,呈明显的前峰单峰型分布;杂原子化合物中的O元素在低温氧化阶段主要以无环的饱和二元酸形式存在,在高温氧化阶段受环化、芳构化及脱甲基作用的影响,伴随着侧链烷基及杂原子基团的断裂和芳构化过程,造成原油中杂原子化合物向着碳数更小、双键当量(double bond equivalents,DBE)值更低的方向演化。该研究探索了温度与原油结构及化学组成之间的关系,对于指导稠油开发现场具有重要意义。
文摘In this extensive investigation,the impact of borax decahydrate as a fuel additive in a diesel single-cylinder engine was rigorously examined.Borax decahydrate was introduced at concentrations of 5,15,25 and 35 g in 500 ml of biodiesel,forming five unique fuel mixtures with conventional diesel:90%diesel+10%spirulina biodiesel(SB10),SB10+1 g borax decahydrate(SB10B1),SB10+3 g borax decahydrate(SB10B3),SB10+5 g borax decahydrate(SB10B5)and SB10+7 g borax decahydrate(SB10B7).The investigation encompassed four diverse loading conditions and yielded insightful findings.Notably,at full load,SB10B3 exhibited a higher cylinder peak pressure than diesel,reaching 69.25 bar.Heat release rate profiles demonstrated superior efficiency for SB10 at 50%load,with a cumulative heat release rate of 950 J/°CA,which is lower than the 1050 J/°CA of diesel.Knock intensity(KI)evaluations revealed that,although SB10 and SB10B1 exhibited higher KI than diesel at full load due to elevated peak pressure,SB10B7 showed no knocking across all loads,indicative of reduced in-cylinder combustion.This meticulous numerical analysis emphasizes the potential of borax decahydrate as a catalyst and enhancer,providing valuable insights into the combustion dynamics of these alternative fuel blends and their viability for sustainable and efficient engine performance.In summary,out of all the blends,SB10B3 could be a potential diesel fuel replacement fuel for compression-ignition engines.