In recent years, advanced composite structures are used extensively in many industries such as aerospace, aircraft, automobile, pipeline and civil engineering. Reliability and safety are crucial requirements posed by ...In recent years, advanced composite structures are used extensively in many industries such as aerospace, aircraft, automobile, pipeline and civil engineering. Reliability and safety are crucial requirements posed by them to the advanced composite structures be- cause of their harsh working conditions. Therefore, as a very important measure, structural health monitoring (SHM) in-service is deft- nitely demanded for ensuring their safe working in-situ. In this paper, fiber Bragg grating (FBG) sensors are surface-mounted on the hoop and in the axial directions of a FRP pressure vessel to monitor the strain status during its pressurization. The experimental results show that the FBG sensors could be used to monitor the strain development and determine the ultimate failure strain of the composite pressure vessel.展开更多
A high sensitivity fiber Bragg grating pressure sensor by using mechanical amplifier is demonstrated. The measured pressure sensitivity is -1.80×10 -4 /MPa, which is about two orders of magnitude better than a si...A high sensitivity fiber Bragg grating pressure sensor by using mechanical amplifier is demonstrated. The measured pressure sensitivity is -1.80×10 -4 /MPa, which is about two orders of magnitude better than a simple monomode fiber with an in-fiber grating. The resolution of pressure measurement is 0.015 MPa based on interrogation using tunable fiber grating filter.展开更多
Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The pla...Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.展开更多
Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, ...Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7%FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.展开更多
A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical ...A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.展开更多
A wind pressure sensor based on fiber Bragg grating (FBG) for engineering structure was investigated in this paper. We established a transaction model of wind pressure to strain and proposed a method of temperature ...A wind pressure sensor based on fiber Bragg grating (FBG) for engineering structure was investigated in this paper. We established a transaction model of wind pressure to strain and proposed a method of temperature compensation. By finite element analysis, the basic parameters of the sensor were optimized with the aim of maximum strain under the basic wind pressure proposed in relative design code in China taking geometrical non-linearity into consideration. The result shows that the wind pressure sensor we proposed is well performed and have good sensing properties, which means it is a technically feasible solution.展开更多
Based on thinned fiber Bragg grating and polymer material, we propose a novel high-sensitivity pressure sensor and obtained a new contribution to the pressure sensitivity, which is dependent on the derivative of the e...Based on thinned fiber Bragg grating and polymer material, we propose a novel high-sensitivity pressure sensor and obtained a new contribution to the pressure sensitivity, which is dependent on the derivative of the effective refractive index (RI) of core mode with respect to the surrounding medium RI, as well as on the relationship between the polymer RI and the pressure; moreover, it is inversely proportional to Young's modulus of the polymer material. For the polymer with Young's modulus of 1.0 MPa, the total pressure sensitivity 1.54×10-2 MPa-1 can be obtained.展开更多
文摘In recent years, advanced composite structures are used extensively in many industries such as aerospace, aircraft, automobile, pipeline and civil engineering. Reliability and safety are crucial requirements posed by them to the advanced composite structures be- cause of their harsh working conditions. Therefore, as a very important measure, structural health monitoring (SHM) in-service is deft- nitely demanded for ensuring their safe working in-situ. In this paper, fiber Bragg grating (FBG) sensors are surface-mounted on the hoop and in the axial directions of a FRP pressure vessel to monitor the strain status during its pressurization. The experimental results show that the FBG sensors could be used to monitor the strain development and determine the ultimate failure strain of the composite pressure vessel.
基金The National Natural Science Foundation of China
文摘A high sensitivity fiber Bragg grating pressure sensor by using mechanical amplifier is demonstrated. The measured pressure sensitivity is -1.80×10 -4 /MPa, which is about two orders of magnitude better than a simple monomode fiber with an in-fiber grating. The resolution of pressure measurement is 0.015 MPa based on interrogation using tunable fiber grating filter.
文摘Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7pm/MPa in a range from 0MPa to 50MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.
基金This work was partly supported by the Natural Science Fund Plan of Shandong Province (No. 2016ZRC01104) and Natural Science Foundation Doctoral Fund of Shandong Province (No. ZR2016FB03).
文摘Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7%FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.
基金the Key Projects Program of Chinese Academy of Sciences under Grant No.KGCX1-SW-10.
文摘A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.
基金Acknowledgements Supported by the National High Technology Research and Development Program of China (863 Program), Grant No. 2014AA110402, the Project of National Key Technology R&D Program in the 12th Five Year Plan of China (Grant No. 2012B AJ11B01), the National Natural Science Foundation of China (Grant No. 50978196), the Fundamental Research Funds for the Central Universities, and State Meteorological Administration Special Funds of Meteorological Industry Research (Grant No. 201306102).
文摘A wind pressure sensor based on fiber Bragg grating (FBG) for engineering structure was investigated in this paper. We established a transaction model of wind pressure to strain and proposed a method of temperature compensation. By finite element analysis, the basic parameters of the sensor were optimized with the aim of maximum strain under the basic wind pressure proposed in relative design code in China taking geometrical non-linearity into consideration. The result shows that the wind pressure sensor we proposed is well performed and have good sensing properties, which means it is a technically feasible solution.
基金Supported by the National Natural Science Foundation of China (50802069)
文摘Based on thinned fiber Bragg grating and polymer material, we propose a novel high-sensitivity pressure sensor and obtained a new contribution to the pressure sensitivity, which is dependent on the derivative of the effective refractive index (RI) of core mode with respect to the surrounding medium RI, as well as on the relationship between the polymer RI and the pressure; moreover, it is inversely proportional to Young's modulus of the polymer material. For the polymer with Young's modulus of 1.0 MPa, the total pressure sensitivity 1.54×10-2 MPa-1 can be obtained.