Three-dimensional tracking of submicron particles in flows in a micro-channel was carried out using in-line holographic microscopy.A fixed single 0.5 μm fluorescent particle was identified and isolated from dust part...Three-dimensional tracking of submicron particles in flows in a micro-channel was carried out using in-line holographic microscopy.A fixed single 0.5 μm fluorescent particle was identified and isolated from dust particles or overlapped particle pair using the laser induced fluorescent(LIF) method.Then in-line microscopic holograms of the fixed single particle were obtained at different positions on the optical axis,i.e.the defocus distances.The holograms of the single particle were used as the model templates with the known defocus distances.The particles in the in-line microscopic holograms of flow in the microchannel were then identified and located to obtain their two-dimensional positions.The defocus distances of those particles were determined by matching each hologram pattern to one of the model templates obtained in the single particle test.Finally the three-dimensional position and velocity of each particle were obtained.展开更多
Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the...Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.展开更多
The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribut...The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.展开更多
The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisper...The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing.展开更多
A novel method is developed for in-line measurements of particle size, velocity and concentration in a dilute, particulate two-phase flow based on trajectory image processing. The measurement system consists of a comm...A novel method is developed for in-line measurements of particle size, velocity and concentration in a dilute, particulate two-phase flow based on trajectory image processing. The measurement system consists of a common industrial CCD camera, an inexpensive LED light and a telecentric lens. In this work, the image pre-processing steps include stitching, illumination correction, binarization, denoising, and the elimination of unreal and defocused particles. A top-hat transformation is found to be very effective for the binarization of images with non-uniform background illumination. Particle trajectories measured within a certain exposure time are used to directly obtain particle size and velocity. The particle concentration is calculated by using the statistics of recognized particles within the field of view. We validate our method by analyzing experiments in a gas-droplet cyclone separator. This in-line image processing method can significantly reduce the measurement cost and avoid the data inversion process involved in the light scattering method.展开更多
This paper presents a new method for in-line and in-situ particle sizing based on the Light Fluctuation Method, including the development of a novel optical probe capable of measuring particle size and concentration i...This paper presents a new method for in-line and in-situ particle sizing based on the Light Fluctuation Method, including the development of a novel optical probe capable of measuring particle size and concentration in the broad range of 10~1000 microns.展开更多
The combination of laser diffraction with upstream sampling realized a break-through for the in- and on-line particles size analysis in industrial applications. Today, the combination of representative sampling, dry d...The combination of laser diffraction with upstream sampling realized a break-through for the in- and on-line particles size analysis in industrial applications. Today, the combination of representative sampling, dry dispersion, particle size analysis by laser diffraction and integrated feedback of the sample is well accepted in many industrial applications. No more interactions of the user are required, and for standard applications the on-line monitoring of particle sizes became nearly as simple as the monitoring of any other process parameter. The increase of inspection interval from 24-hour operation to months has increased user confidence in this technology, and industries with more demanding measurement requirements are seeking to benefit from this performance. This challenge could not be solved with simple scale-ups or scale-downs. New solutions had to be found for the sampling system, the measuring sensor, the adaptation to the environmental conditions and the processing of fast growing volume of data.展开更多
This paper discusses two problems in in-line particle sizing when using light fluctuation method. First, by retrieving the ratio of particle concentrations at different time, the intensity of incident light is obtaine...This paper discusses two problems in in-line particle sizing when using light fluctuation method. First, by retrieving the ratio of particle concentrations at different time, the intensity of incident light is obtained. There exists narrow error between the calculated and pre-detected value of the intensity of incident light. Secondly, by combining spectrum analysis with Gregory's theory, a multi-sub-size zone model is proposed, with which the relationship between the distribution of turbidity and the particle size distribution (PSD) can be established, and an algorithm developed to determine the distribution of turbidity. Experiments conducted in the laboratory indicate that the measured size distribution of pulverized coal conforms well with the imaging result.展开更多
基金Supported by the National Natural Science Foundation of China (50736002,61072005)Changjiang Scholars and Innovative Team Development Plan (IRT0957)
文摘Three-dimensional tracking of submicron particles in flows in a micro-channel was carried out using in-line holographic microscopy.A fixed single 0.5 μm fluorescent particle was identified and isolated from dust particles or overlapped particle pair using the laser induced fluorescent(LIF) method.Then in-line microscopic holograms of the fixed single particle were obtained at different positions on the optical axis,i.e.the defocus distances.The holograms of the single particle were used as the model templates with the known defocus distances.The particles in the in-line microscopic holograms of flow in the microchannel were then identified and located to obtain their two-dimensional positions.The defocus distances of those particles were determined by matching each hologram pattern to one of the model templates obtained in the single particle test.Finally the three-dimensional position and velocity of each particle were obtained.
基金supported by the National Natural Science Foundation of China(Grant No.11804002)the University Science Research Project of Anhui Province,China(Grant Nos.KJ2019A0792 and KJ2019A0797)the Anhui Jianzhu University Research Project(Grant No.2018QD06)。
文摘Nearfield acoustic holography in a moving medium is a technique which is typically suitable for sound sources identification in a flow.In the process of sound field reconstruction,sound pressure is usually used as the input,but it may contain considerable background noise due to the interactions between microphones and flow moving at a high velocity.To avoid this problem,particle velocity is an alternative input,which can be obtained by using laser Doppler velocimetry in a non-intrusive way.However,there is a singular problem in the conventional propagator relating the particle velocity to the pressure,and it could lead to significant errors or even false results.In view of this,in this paper,nonsingular propagators are deduced to realize accurate reconstruction in both cases that the hologram is parallel to and perpendicular to the flow direction.The advantages of the proposed method are analyzed,and simulations are conducted to verify the validation.The results show that the method can overcome the singular problem effectively,and the reconstruction errors are at a low level for different flow velocities,frequencies,and signal-to-noise ratios.
基金The National Key Research and Development Program(2020YFA0906804)the National Natural Science Foundation of China(22078325,22035007,91934301)+1 种基金the NSFC-EU project(31961133018)the Special Project of Strategic Leading Science and Technology,CAS(XDC06010302)are gratefully acknowledged.
文摘The particle size distribution of polymer always develops in emulsion polymerization systems,and certain key phenomena/mechanisms as well as properties of the final product are significantly affected by this distribution.This review mainly focuses on the measurement methods of particle size distribution rather than average particle size during the emulsion polymerization process,including the existing off-line,on-line,and in-line measurement methods.Moreover,the principle,resolution,performance,advantages,and drawbacks of various methods for evaluating particle size distribution are contrasted and illustrated.Besides,several possible development directions or solutions of the in-line measurement technology are explored.
基金supported by the National Natural Science Fund for Distinguished Young Scholars (No. 51825605)。
文摘The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing.
基金support from the National Natural Science Foundation of China(51206112,51076106, 51176128)the Science and Technology Support Program in Shanghai(10540501000)
文摘A novel method is developed for in-line measurements of particle size, velocity and concentration in a dilute, particulate two-phase flow based on trajectory image processing. The measurement system consists of a common industrial CCD camera, an inexpensive LED light and a telecentric lens. In this work, the image pre-processing steps include stitching, illumination correction, binarization, denoising, and the elimination of unreal and defocused particles. A top-hat transformation is found to be very effective for the binarization of images with non-uniform background illumination. Particle trajectories measured within a certain exposure time are used to directly obtain particle size and velocity. The particle concentration is calculated by using the statistics of recognized particles within the field of view. We validate our method by analyzing experiments in a gas-droplet cyclone separator. This in-line image processing method can significantly reduce the measurement cost and avoid the data inversion process involved in the light scattering method.
文摘This paper presents a new method for in-line and in-situ particle sizing based on the Light Fluctuation Method, including the development of a novel optical probe capable of measuring particle size and concentration in the broad range of 10~1000 microns.
文摘The combination of laser diffraction with upstream sampling realized a break-through for the in- and on-line particles size analysis in industrial applications. Today, the combination of representative sampling, dry dispersion, particle size analysis by laser diffraction and integrated feedback of the sample is well accepted in many industrial applications. No more interactions of the user are required, and for standard applications the on-line monitoring of particle sizes became nearly as simple as the monitoring of any other process parameter. The increase of inspection interval from 24-hour operation to months has increased user confidence in this technology, and industries with more demanding measurement requirements are seeking to benefit from this performance. This challenge could not be solved with simple scale-ups or scale-downs. New solutions had to be found for the sampling system, the measuring sensor, the adaptation to the environmental conditions and the processing of fast growing volume of data.
文摘This paper discusses two problems in in-line particle sizing when using light fluctuation method. First, by retrieving the ratio of particle concentrations at different time, the intensity of incident light is obtained. There exists narrow error between the calculated and pre-detected value of the intensity of incident light. Secondly, by combining spectrum analysis with Gregory's theory, a multi-sub-size zone model is proposed, with which the relationship between the distribution of turbidity and the particle size distribution (PSD) can be established, and an algorithm developed to determine the distribution of turbidity. Experiments conducted in the laboratory indicate that the measured size distribution of pulverized coal conforms well with the imaging result.