In-line x-ray phase contrast imaging has attracted much attention due to two major advantages: its effectiveness in imaging weakly absorbing materials, and the simplicity of its facilities. In this paper a comprehens...In-line x-ray phase contrast imaging has attracted much attention due to two major advantages: its effectiveness in imaging weakly absorbing materials, and the simplicity of its facilities. In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med. Phys. 31 2378-2384 (2004)] is reviewed. The influence of x-ray source and detector on the image is discussed. Experiments using a microfocus x-ray source and a CCD detector are conducted, which show the role of two key factors on imaging: the tube voltage and tube current. High tube current and moderate tube voltage are suggested for imaging.展开更多
Two algorithms for the phase retrieval of hard X-ray in-line phase contrast imaging are presented. One is referred to as Iterative Angular Spectrum Algorithm (IASA) and the other is a hybrid algorithm that combines IA...Two algorithms for the phase retrieval of hard X-ray in-line phase contrast imaging are presented. One is referred to as Iterative Angular Spectrum Algorithm (IASA) and the other is a hybrid algorithm that combines IASA with TIE (transport of intensity equation). The calculations of the algorithms are based on free space propagation of the angular spectrum. The new approaches are demonstrated with numerical simulations. Comparisons with other phase retrieval algorithms are also performed. It is shown that the phase retrieval method combining the IASA and TIE is a promising technique for the application of hard X-ray phase contrast imaging.展开更多
Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors.Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method.V...Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors.Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method.Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility.Barium sulfate and physiological saline were used as contrast agents for the blood vessels.Blood vessels of <Φ20μm could be detected by replacing resident blood with physiological saline or barium sulfate.An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image.It is demonstrated that selective angiography based on phase contrast X-ray imaging,with a physiological material of low Z elements (such as saline) being the contrast agent,is a viable imaging strategy.Further efforts will be focused on using the technique to image tumor angiogenesis.展开更多
The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of tr...The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).展开更多
A CO2 laser-based phase contrast imaging(PCI) diagnostic has been developed on HL-2A tokamak.It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered b...A CO2 laser-based phase contrast imaging(PCI) diagnostic has been developed on HL-2A tokamak.It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered by the bulk plasma.The diagnosed radial region ranges from ρ≡r/a =0.625 to 0.7.32-channel HgCdTe detectors with alternative-current biased amplifiers are arranged in line at the imaging plane of the optical path.This PCI is able to diagnose density fluctuations with wavenumbers ranging from 2 to 15 cm-1 and the time resolution is better than 2 μs.The first experimental data were achieved in 2018 spring campaign of HL-2A tokamak.High performance is confirmed in different discharging configurations and makes it a keen tool in broadband turbulence investigations.展开更多
Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refr...Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.展开更多
A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the ...A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.展开更多
X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam,...X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore,not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring.Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.展开更多
An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas ...An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas made to enlarge the X-ray beam section and consequently larger samples could be imaged. In-line setup was em-ployed for experiments. Results on a series of samples were given and soft-tissue details of less than 50 μm inside afresh goldfish were obtained. Diagnosis of tumor in its early stage was also investigated taking SD rats as the model.Tumor at the size of ~ 100μm was observed. Potential of this technique in clinic diagnosis was discussed.展开更多
We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microsco...We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.展开更多
X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping informa...X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping information extraction method reduces system stability and prolongs data acquisition time by several times compared with conventional x-ray absorption- based imaging. The mechanical stepping can be avoided by using a staggered grating, but at the cost of low vertical spatial resolution. In this paper, employing a modified staggered grating and the angular signal radiography, we proposed a single-shot grating-based x-ray differential phase contrast imaging with decent vertical spatial resolution. The theoretical framework was deduced and proved by numerical experiments. Absorption, phase, and scattering computed tomography can be performed without phase stepping. Therefore, we believe this fast and highly stable imaging method with decent resolution would be widely applied in x-ray grating-based phase contrast imaging.展开更多
A fast and simple method to extract phase-contrast images from interferograms is proposed, and its effectiveness is demonstrated through simulation and experiment. For x-ray differential phase contrast imaging, a stro...A fast and simple method to extract phase-contrast images from interferograms is proposed, and its effectiveness is demonstrated through simulation and experiment. For x-ray differential phase contrast imaging, a strong attenuation signal acts as an overwhelming background intensity that obscures the weak phase signal so that no obvious phase-gradient information is detectable in the raw image. By subtracting one interferogram from another, chosen at particular intervals,the phase signal can be isolated and magnified.展开更多
For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain inf...For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain information on the x- ray's phase shift. Four kinds of approaches to the relationship between intensity distribution and phase shift axe reviewed and discussed. A micro-focal x-ray source with high geometrical magnification is used to acquire phase contrast images. A great improvement on image quality is shown and geometrical parameters axe modified for comparison between different imaging positions.展开更多
In theory, we find that the actual function of the analyzer grating in the Talbot–Lau interferometer is segmenting the self-images of the phase grating and choosing integral areas, which make sure that each period of...In theory, we find that the actual function of the analyzer grating in the Talbot–Lau interferometer is segmenting the self-images of the phase grating and choosing integral areas, which make sure that each period of self-images in one detector pixel contributes the same signal to the detector. Furthermore, in the case of the lack of an analyzer grating, the shifting curves are still existent in theory as long as the number of fringes is non-integral in a detector pixel, which is a sufficient condition for creating shifting curve. The sufficient condition is available for not only the Talbot–Lau interferometer and the inverse geometry of Talbot–Lau interferometer, but also the x-ray phase contrast imaging system based on geometrical optics. In practical applications, we propose a method to improve the performances of the existing systems by employing the sufficient condition. This method can shorten the system length, is applicable to large period gratings, and can use the detectors with large pixels and large field of view. In addition, the experimental arrangement can be simplified due to the lack of an analyzer grating. In order to improve detection sensitivity and resolution, we also give an optimal fringe period.We believe that the theory and method proposed here is a step forward for x-ray phase contrast imaging.展开更多
A phase contrast imaging(PCI) diagnostic has recently been developed on HL-2 A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm^(-1) and wave number resolution of 2 cm^(-1)....A phase contrast imaging(PCI) diagnostic has recently been developed on HL-2 A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm^(-1) and wave number resolution of 2 cm^(-1). The time resolution reaches 2 μs. A 10.6 μm CO_2 laser is expanded to a beam with a diameter of 30 mm and injected into the plasma as an incident beam,injecting into plasma. The emerging scattered and unscattered beams are contrasted by a phase plate. The ideas of optical path design are presented in this paper, together with the parameters of the main optical components. The whole optical path of PCI is not only carefully designed, but also constructed on HL-2 A. First calibration results show the ability of this system to catch plasma turbulence in a wide frequency domain.展开更多
Grating-based x-ray phase contrast imaging has attracted increasing interest in recent decades as multimodal and laboratory source usable method.Specific efforts have been focused on establishing a new extraction meth...Grating-based x-ray phase contrast imaging has attracted increasing interest in recent decades as multimodal and laboratory source usable method.Specific efforts have been focused on establishing a new extraction method to perform practical applications.In this work,noise properties of multi-combination information of newly established information extraction method,so-called angular signal radiography method,are investigated to provide guidelines for targeted and specific applications.The results show that how multi-combination of images can be used in targeted practical applications to obtain a high-quality image in terms of signal-to-noise ratio.Our conclusions can also hold true for upcoming targeted practical applications such as biomedical imaging,non-destructive imaging,and materials science.展开更多
In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltag...In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltage (kVp) on propagation-based phase-contrast imaging have been investigated with two types of microfocus x-ray tubes, a conventional sealed x-ray tube with the focal spot size of 13 - 20 μm and an open x-ray tube with minimum focal spot size less than 2 μm. A cooled x-ray CCD detector with the pixel size of 24 μm was used to acquire digital images. Two thin plastic sheets with different thickness were used as radiography phantoms. Two different phenomena were observed for the two x-ray tubes. For the open tube, phase-contrast effect has a slight drop with the increasing of tube voltage, however, it is opposite for the sealed tube. A further investigation indicates that the variation of focal spot size causes the abnormal result for the sealed tube. It also shows that phase-contrast effect is more sensitive to focal spot size than tube voltage.展开更多
We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images ar...We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method.展开更多
A general theoretical framework is presented to explain the formation of the phase signal in an x-ray microscope integrated with a grating interferometer,which simultaneously enables the high spatial resolution imagin...A general theoretical framework is presented to explain the formation of the phase signal in an x-ray microscope integrated with a grating interferometer,which simultaneously enables the high spatial resolution imaging and the improved image contrast.By using this theory,several key parameters of phase contrast imaging can be predicted,for instance,the fringe visibility and period,and the conversion condition from the differential phase imaging(DPI)to the phase difference imaging(PDI).Additionally,numerical simulations are performed with certain x-ray optical components and imaging geometry.Comparison with the available experimental measurement[Appl.Phys.Lett.113063105(2018)]demonstrates the accuracy of this developed quantitative analysis method of x-ray phase-sensitive microscope imaging.展开更多
This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the...This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the past 5 years.The photon energy range of the beamline is 8–72.5 keV.Several sets of X-ray imaging detectors with different pixel sizes(0.19–24 lm)are used to realize X-ray microcomputed tomography(X-ray micro-CT)and X-ray in-line phase-contrast imaging.To satisfy the requirements of user experiments,new X-ray imaging methods and image processing techniques are developed.In vivo dynamic micro-CT experiments with living insects are performed in 0.5 s(sampling rate of 2 Hz,2 tomograms/s)with a monochromatic beam from a wiggler source and in 40 ms(sampling rate of 25 Hz,25 tomograms/s)with a white beam from a bending magnet source.A new X-ray imaging method known as move contrast X-ray imaging is proposed,with which blood flow and moving tissues in raw images can be distinguished according to their moving frequencies in the time domain.Furthermore,X-ray speckle-tracking imaging with twice exposures to eliminate the edge enhancement effect is developed.A high-precision quantification method is realized to measure complex three-dimensional blood vessels obtained via X-ray micro-CT.X-ray imaging methods such as three-dimensional X-ray diffraction microscopy,small-angle X-ray scattering CT,and X-ray fluorescence CT are developed,in which the X-ray micro-CT imaging method is combined with other contrast mechanisms such as diffraction,scattering,and fluorescence contrasts respectively.Moreover,an X-ray nano-CT experiment is performed with a 100 nm spatial resolution.Typical user experimental results from the fields of material science,biomedicine,paleontology,physics,chemistry,and environmental science obtained on the beamline are provided.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10475044).
文摘In-line x-ray phase contrast imaging has attracted much attention due to two major advantages: its effectiveness in imaging weakly absorbing materials, and the simplicity of its facilities. In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med. Phys. 31 2378-2384 (2004)] is reviewed. The influence of x-ray source and detector on the image is discussed. Experiments using a microfocus x-ray source and a CCD detector are conducted, which show the role of two key factors on imaging: the tube voltage and tube current. High tube current and moderate tube voltage are suggested for imaging.
基金supported by the National Natural Science Foundation of China(Grant No.60472107)the Natural Science Foundation of Guangdong Province(Grant Nos.04300862 and 04300864)Shenzhen Bureau of Science,Technology&Information(Grant No.200426).
文摘Two algorithms for the phase retrieval of hard X-ray in-line phase contrast imaging are presented. One is referred to as Iterative Angular Spectrum Algorithm (IASA) and the other is a hybrid algorithm that combines IASA with TIE (transport of intensity equation). The calculations of the algorithms are based on free space propagation of the angular spectrum. The new approaches are demonstrated with numerical simulations. Comparisons with other phase retrieval algorithms are also performed. It is shown that the phase retrieval method combining the IASA and TIE is a promising technique for the application of hard X-ray phase contrast imaging.
基金Supported by National Basic Research Program of China (973 Program Grant No.2010CB834305)
文摘Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors.Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method.Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility.Barium sulfate and physiological saline were used as contrast agents for the blood vessels.Blood vessels of <Φ20μm could be detected by replacing resident blood with physiological saline or barium sulfate.An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image.It is demonstrated that selective angiography based on phase contrast X-ray imaging,with a physiological material of low Z elements (such as saline) being the contrast agent,is a viable imaging strategy.Further efforts will be focused on using the technique to image tumor angiogenesis.
基金supported by the National Key Research and Development Program of China(Nos.2019YFE03090100 and 2022YFE03100002)National Natural Science Foundation of China(No.12075241)。
文摘The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).
基金supported by the National Key Research and Development Program of China (No.2017YFE0300405)National Natural Science Foundation of China (Nos.11875124, 11705052, 11575055 and 11611130164)the National Magnetic Confinement Fusion Science Program of China (No.2015GB120002)
文摘A CO2 laser-based phase contrast imaging(PCI) diagnostic has been developed on HL-2A tokamak.It can detect line integrated plasma density fluctuations by measuring the phase shift of laser beam after being scattered by the bulk plasma.The diagnosed radial region ranges from ρ≡r/a =0.625 to 0.7.32-channel HgCdTe detectors with alternative-current biased amplifiers are arranged in line at the imaging plane of the optical path.This PCI is able to diagnose density fluctuations with wavenumbers ranging from 2 to 15 cm-1 and the time resolution is better than 2 μs.The first experimental data were achieved in 2018 spring campaign of HL-2A tokamak.High performance is confirmed in different discharging configurations and makes it a keen tool in broadband turbulence investigations.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KJCX2-YW-N42)the Key Project of the National Natural Science Foundation of China (Grant No.10734070)+3 种基金the National Natural Science Foundation of China (Grant No.11205157)the National Basic Research Program of China (Grant Nos. 2009CB930804 and 2012CB825800)the Fundamental Research Funds for the Central Universities,China (Grant No. WK2310000021)the China Postdoctoral Science Foundation (Grant No. 2011M501064)
文摘Grating-based X-ray phase contrast imaging has been demonstrated to he an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse- projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensionak phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.
基金Project(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(50275150) supported by the National Natural Science Foundation of China
文摘A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11675253 and 11505278)。
文摘X-ray speckle tracking based methods can provide results with best reported angular accuracy up to 2 nrad. However,duo to the multi-frame requirement for phase retrieval and the possible instability of the x-ray beam, mechanical and background vibration, the actual accuracy will inevitably be degraded by these time-dependent fluctuations. Therefore,not only spatial position, but also temporal features of the speckle patterns need to be considered in order to maintain the superiority of the speckle-based methods. In this paper, we propose a parallel acquisition method with advantages of real time and high accuracy, which has potential applicability to dynamic samples imaging as well as on-line beam monitoring.Through simulations, we demonstrate that the proposed method can reduce the phase error caused by the fluctuations to1% at most compared with current speckle tracking methods. Meanwhile, it can keep the accuracy deterioration within0.03 nrad, making the high theoretical accuracy a reality. Also, we find that waveforms of the incident beam have a little impact on the phase retrieved and will not influence the actual accuracy, which relaxes the requirements for speckle-based experiments.
基金National Natural Science Foundation of China(No.10275087)Shanghai Foundation on Development of Science and Technology(No.022261023) Shanghai Foundation for Natural Science(No.02ZF14116)
文摘An experimental study on nondestructive X-ray imaging of inner structure of soft tissues in phase con-trast has been conducted with Beijing Synchrotron Radiation Facility (BSRF). Modification to the beamline setupwas made to enlarge the X-ray beam section and consequently larger samples could be imaged. In-line setup was em-ployed for experiments. Results on a series of samples were given and soft-tissue details of less than 50 μm inside afresh goldfish were obtained. Diagnosis of tumor in its early stage was also investigated taking SD rats as the model.Tumor at the size of ~ 100μm was observed. Potential of this technique in clinic diagnosis was discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174019,61322509 and 11121091the National Basic Research Program of China under Grant No 2013CB921904
文摘We propose and implement a wide-field vibrational phase contrast detection to obtain imaging of imaginary components of third-order nonlinear susceptibility in a coherent anti-Stokes Raman scattering (CARS) microscope with full suppression of the non-resonant background. This technique is based on the unique ability of recovering the phase of the generated CARS signal based on holographic recording. By capturing the phase distributions of the generated CARS field from the sample and from the environment under resonant illumination, we demonstrate the retrieval of imaginary components in the CARS microscope and achieve background free coherent Raman imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.11275204,11475175,and 11405175)the China Postdoctoral Science Foundation(Grant No.2017M612097)the Fundamental Research Funds for the Central Universities(Grant No.WK2310000065)
文摘X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping information extraction method reduces system stability and prolongs data acquisition time by several times compared with conventional x-ray absorption- based imaging. The mechanical stepping can be avoided by using a staggered grating, but at the cost of low vertical spatial resolution. In this paper, employing a modified staggered grating and the angular signal radiography, we proposed a single-shot grating-based x-ray differential phase contrast imaging with decent vertical spatial resolution. The theoretical framework was deduced and proved by numerical experiments. Absorption, phase, and scattering computed tomography can be performed without phase stepping. Therefore, we believe this fast and highly stable imaging method with decent resolution would be widely applied in x-ray grating-based phase contrast imaging.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61101175,61571305,and 61227802)
文摘A fast and simple method to extract phase-contrast images from interferograms is proposed, and its effectiveness is demonstrated through simulation and experiment. For x-ray differential phase contrast imaging, a strong attenuation signal acts as an overwhelming background intensity that obscures the weak phase signal so that no obvious phase-gradient information is detectable in the raw image. By subtracting one interferogram from another, chosen at particular intervals,the phase signal can be isolated and magnified.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475044).
文摘For weakly absorbing materials, image contrast can be enhanced by phase contrast in formation. The effectiveness of the in-line phase contrast technique relies on its ability to record intensity data which contain information on the x- ray's phase shift. Four kinds of approaches to the relationship between intensity distribution and phase shift axe reviewed and discussed. A micro-focal x-ray source with high geometrical magnification is used to acquire phase contrast images. A great improvement on image quality is shown and geometrical parameters axe modified for comparison between different imaging positions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074172 and 11674232)the National Key Basic Research Program,China(Grant No.2012CB825804)the National Special Foundation for Major Science Instrument,China(Grant No.61227802)
文摘In theory, we find that the actual function of the analyzer grating in the Talbot–Lau interferometer is segmenting the self-images of the phase grating and choosing integral areas, which make sure that each period of self-images in one detector pixel contributes the same signal to the detector. Furthermore, in the case of the lack of an analyzer grating, the shifting curves are still existent in theory as long as the number of fringes is non-integral in a detector pixel, which is a sufficient condition for creating shifting curve. The sufficient condition is available for not only the Talbot–Lau interferometer and the inverse geometry of Talbot–Lau interferometer, but also the x-ray phase contrast imaging system based on geometrical optics. In practical applications, we propose a method to improve the performances of the existing systems by employing the sufficient condition. This method can shorten the system length, is applicable to large period gratings, and can use the detectors with large pixels and large field of view. In addition, the experimental arrangement can be simplified due to the lack of an analyzer grating. In order to improve detection sensitivity and resolution, we also give an optimal fringe period.We believe that the theory and method proposed here is a step forward for x-ray phase contrast imaging.
基金supported by the National Magnetic Confinement Fusion Energy Research Project(Grant Nos.2015GB120002,2013GB107000,2012GB101001)National Natural Science Foundation of China(Grant Nos.11375053,11535013)the Natural Science Foundation of Anhui Province(Grant No.1608085MA08)
文摘A phase contrast imaging(PCI) diagnostic has recently been developed on HL-2 A tokamak. It can diagnose plasma density fluctuations with maximum wave number of 15 cm^(-1) and wave number resolution of 2 cm^(-1). The time resolution reaches 2 μs. A 10.6 μm CO_2 laser is expanded to a beam with a diameter of 30 mm and injected into the plasma as an incident beam,injecting into plasma. The emerging scattered and unscattered beams are contrasted by a phase plate. The ideas of optical path design are presented in this paper, together with the parameters of the main optical components. The whole optical path of PCI is not only carefully designed, but also constructed on HL-2 A. First calibration results show the ability of this system to catch plasma turbulence in a wide frequency domain.
基金Project supported by the National Natural Science Foundation of China(Grant No.11535015)the National Special Foundation of China for Major Science Instrument(Grant No.61227802)+3 种基金the National Natural Science Foundation of China(Grant Nos.61405120,61605119,61571305,and 11674232)the Natural Science Foundation of Shenzhen,China(Grant No.JCYJ20170302142617703)the Natural Science Foundation of Shenzhen University,China(Grant Nos.2017017 and 2018041)sponsored by the Post-doctoral International Exchange Program of China
文摘Grating-based x-ray phase contrast imaging has attracted increasing interest in recent decades as multimodal and laboratory source usable method.Specific efforts have been focused on establishing a new extraction method to perform practical applications.In this work,noise properties of multi-combination information of newly established information extraction method,so-called angular signal radiography method,are investigated to provide guidelines for targeted and specific applications.The results show that how multi-combination of images can be used in targeted practical applications to obtain a high-quality image in terms of signal-to-noise ratio.Our conclusions can also hold true for upcoming targeted practical applications such as biomedical imaging,non-destructive imaging,and materials science.
文摘In the past decade, phase-contrast imaging (PCI) has become a hot research with an increased improvement of the image contrast with respect to conventional absorption radiography. In this paper, effects of tube voltage (kVp) on propagation-based phase-contrast imaging have been investigated with two types of microfocus x-ray tubes, a conventional sealed x-ray tube with the focal spot size of 13 - 20 μm and an open x-ray tube with minimum focal spot size less than 2 μm. A cooled x-ray CCD detector with the pixel size of 24 μm was used to acquire digital images. Two thin plastic sheets with different thickness were used as radiography phantoms. Two different phenomena were observed for the two x-ray tubes. For the open tube, phase-contrast effect has a slight drop with the increasing of tube voltage, however, it is opposite for the sealed tube. A further investigation indicates that the variation of focal spot size causes the abnormal result for the sealed tube. It also shows that phase-contrast effect is more sensitive to focal spot size than tube voltage.
基金supported by the National Basic Research Program of China(Grant No.2012CB825801)the National Natural Science Foundation of China(Grant Nos.11505188,and 11305173)
文摘We develop an element-specific x-ray microscopy method by using Zernike phase contrast imaging near absorption edges, where a real part of refractive index changes abruptly. In this method two phase contrast images are subtracted to obtain the target element: one is at the absorption edge of the target element and the other is near the absorption edge. The x-ray exposure required by this method is expected to be significantly lower than that of conventional absorption-based x-ray elemental imaging methods. Numerical calculations confirm the advantages of this highly efficient imaging method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12027812 and 11804356)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2021362).
文摘A general theoretical framework is presented to explain the formation of the phase signal in an x-ray microscope integrated with a grating interferometer,which simultaneously enables the high spatial resolution imaging and the improved image contrast.By using this theory,several key parameters of phase contrast imaging can be predicted,for instance,the fringe visibility and period,and the conversion condition from the differential phase imaging(DPI)to the phase difference imaging(PDI).Additionally,numerical simulations are performed with certain x-ray optical components and imaging geometry.Comparison with the available experimental measurement[Appl.Phys.Lett.113063105(2018)]demonstrates the accuracy of this developed quantitative analysis method of x-ray phase-sensitive microscope imaging.
基金This work was supported by the National Key Research and Development Program of China(Nos.2017YFA0403801,2016YFA0401302,2017YFA0206004,2018YFC1200204)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901).
文摘This paper introduces some latest developments regarding the X-ray imaging methodology and applications of the X-ray imaging and biomedical application beamline(BL13W1)at Shanghai Synchrotron Radiation Facility in the past 5 years.The photon energy range of the beamline is 8–72.5 keV.Several sets of X-ray imaging detectors with different pixel sizes(0.19–24 lm)are used to realize X-ray microcomputed tomography(X-ray micro-CT)and X-ray in-line phase-contrast imaging.To satisfy the requirements of user experiments,new X-ray imaging methods and image processing techniques are developed.In vivo dynamic micro-CT experiments with living insects are performed in 0.5 s(sampling rate of 2 Hz,2 tomograms/s)with a monochromatic beam from a wiggler source and in 40 ms(sampling rate of 25 Hz,25 tomograms/s)with a white beam from a bending magnet source.A new X-ray imaging method known as move contrast X-ray imaging is proposed,with which blood flow and moving tissues in raw images can be distinguished according to their moving frequencies in the time domain.Furthermore,X-ray speckle-tracking imaging with twice exposures to eliminate the edge enhancement effect is developed.A high-precision quantification method is realized to measure complex three-dimensional blood vessels obtained via X-ray micro-CT.X-ray imaging methods such as three-dimensional X-ray diffraction microscopy,small-angle X-ray scattering CT,and X-ray fluorescence CT are developed,in which the X-ray micro-CT imaging method is combined with other contrast mechanisms such as diffraction,scattering,and fluorescence contrasts respectively.Moreover,an X-ray nano-CT experiment is performed with a 100 nm spatial resolution.Typical user experimental results from the fields of material science,biomedicine,paleontology,physics,chemistry,and environmental science obtained on the beamline are provided.