Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In ...Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In order to solve this problem, a screw drive in-pipe robot based on adaptive linkage mechanism is proposed. The differential property of the adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes by adjusting inclining angles of rollers self-adaptively. The maximum traction capacity of the robot can be changed by actively adjusting the inclining angles of rollers. In order to improve the adaptability to the variable resistance, a torque control method based on the fuzzy controller is proposed. For the variable environment resistance, the proposed control method can not only ensure enough traction force, but also limit the output torque in a feasible region. In the simulations, the robot with the proposed control method is compared to the robot with fixed inclining angles of rollers. The results show that the combination of the torque control method and the proposed robot achieves the better adaptability to the variable resistance in the straight and curved pipes.展开更多
A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The ...A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN.展开更多
A global localization system of in-pipe robot is introduced in this paper.Global position system(GPS)is applied to monitor the motion of robot along the whole pipeline which is equally divided intomany segments by tra...A global localization system of in-pipe robot is introduced in this paper.Global position system(GPS)is applied to monitor the motion of robot along the whole pipeline which is equally divided intomany segments by tracking stations.The definite segment in which robot existing can be detected and thisis long-range localization.Ultra-long wave(ULW)is adopted to solve the problem of metallic shieldingand realize effective communication between inside and outside of pipeline.ULW emitter is carried byrobot.When the plant is broken or defects on pipe-wall are inspected,the robot will stop moving.Anten-na array is presented and disposed upon the definite segment to search the accurate location of robot,andthis is short-range localization.In this paper,five-antenna array is adopted and an effective linear signalfusion algorithm is presented.The localization precision reaches R < 25cm.By tests in Shengli oil field,the whole system is verified with robust solutions.展开更多
In-pipe robots have been widely used in pipes-with smooth inner walls.However,current in-pipe robots face challenges in terms of moving past obstacles and climbing in marine-vessel pipeline systems,which are affected ...In-pipe robots have been widely used in pipes-with smooth inner walls.However,current in-pipe robots face challenges in terms of moving past obstacles and climbing in marine-vessel pipeline systems,which are affected by marine biofouling and electrochemical corrosion.This paper takes inspiration from the dual-hook structure of Trypoxylus dichotomus’s feet and gecko‑like dry adhesives,proposing an in-pipe robot that is capable of climbing on rough and smooth pipe inwalls.The combination of the bioinspired hook and dry adhesives allows the robot to stably attach to rough or smooth pipe inwalls,while the wheel-leg hybrid mechanism provides better conditions for obstacle traversal.The paper explores the attachment and obstacle-surmounting mechanisms of the robot.Moreover,motion strategies for the robot are devised based on different pipe structural features.The experiments showed that this robot can adapt to both smooth and rough pipe environments simultaneously,and its motion performance is superior to conventional driving mechanisms.The robot’s active turning actuators also enable it to navigate through horizontally or vertically oriented 90°bends.展开更多
A screw drive in-pipe robot is promising inspection equipment for small pipes. However, most of the existing screw drive in-pipe robots have problems of motion interference and slipping inside curved or irregular pipe...A screw drive in-pipe robot is promising inspection equipment for small pipes. However, most of the existing screw drive in-pipe robots have problems of motion interference and slipping inside curved or irregular pipes. These problems result from the coupled relations among the steering motion, the motion speed and the load ability of the robot. In order to deal with the problems, the axiomatic design (AD) theory is applied to evaluate and analyze the existing designs. Then an uncoupled con- cept design based on the AD theory is proposed and the complete AD decomposition process is presented. After that, the pro- posed robot based on a tri-axial differential angle modulation mechanism is designed to realize the uncoupled concept. Finally, the uncoupled property is verified in a dynamics simulation system. The simulation results indicate that the mc tion speed, load ability and steering motion of the proposed robot can be adjusted individually compared with the robots taat have inclin- ing-angle-fixed rollers. Owing to the uncoupled design, the proposed robot can mechanically adapt to straight pipes and curved pipes with less roller slipping.展开更多
To improve the safety and efficiency of polishing operations in circular boiler headers, a new type of wheel-drive polishing robot was developed in this study. The robot was designed to grind weld beads on the inner w...To improve the safety and efficiency of polishing operations in circular boiler headers, a new type of wheel-drive polishing robot was developed in this study. The robot was designed to grind weld beads on the inner walls of pipes in diameter between 550 mm and 714 mm. The robot consists of a moving structure, a positioning structure, and a polishing structure. Charge coupled device (CCD) cameras and line lasers are used in the robot's vision system, thus the robot can be manually controlled to move, locate, and grind quickly and accurately. The experimental results showed that the robot performed well in practical applications.展开更多
Soft in-pipe robot has good adaptability in tubular circumstances,while its rigidity is insufficient,which affects the traction performance.This paper proposes a novel worm-like in-pipe robot with a rigid and soft str...Soft in-pipe robot has good adaptability in tubular circumstances,while its rigidity is insufficient,which affects the traction performance.This paper proposes a novel worm-like in-pipe robot with a rigid and soft structure,which not only has strong traction ability but also flexible mobility in the shaped pipes.Imitating the structure features of the earthworm,the bionic in-pipe robot structure is designed including two soft anchor parts and one rigid telescopic part.The soft-supporting mechanism is the key factor for the in-pipe robot excellent performance,whose mathematical model is established and the mechanical characteristics are analyzed,which is used to optimize the structural parameters.The prototype is developed and the motion control strategy is planned.Various performances of the in-pipe robot are tested,such as the traction ability,moving velocity and adaptability.For comparative analysis,different operating scenarios are built including the horizontal pipe,the inclined pipe,the vertical pipe and other unstructured pipes.The experiment results show that the in-pipe robot is suitable for many kinds of pipe applications,the average traction is about 6.8N,the moving velocity is in the range of 9.5 to 12.7 mm/s.展开更多
A new type of in-pipe mobile robot was designed and developed on the basis of w heel in-pipe robot and crawler in-pipe robot. The three sets of driving wheels circumferentially 120° apart in the cross section, bo...A new type of in-pipe mobile robot was designed and developed on the basis of w heel in-pipe robot and crawler in-pipe robot. The three sets of driving wheels circumferentially 120° apart in the cross section, both front and rear driving wheels are distributed on the same parallelogram mechanis m. The driving motor drives the three sets of driving wheels by worm couple, the regulating motor makes the three sets of driving wheels push against the pipe inwall with stable and adequate pressing force by the ball screw pair and p ressure sensor, so the in-pipe robot can provide adequate and stable traction force. The robot mechanism is simple and sm all in size and work reliably . It is particularly suitable to the pipe with diameter 400~650 mm.展开更多
In a bustling street in Wenzhou,east China’s Zhejiang Province,a futuristic ball-shaped robot recently made waves online as it patrolled alongside uniformed police officers.Developed through a collaboration between W...In a bustling street in Wenzhou,east China’s Zhejiang Province,a futuristic ball-shaped robot recently made waves online as it patrolled alongside uniformed police officers.Developed through a collaboration between Wenzhou police and Zhejiang University,the RT-G is no ordinary robot.According to Huang Sufeng,deputy commander of a special patrol police brigade in Wenzhou,east China’s Zhejiang Province.展开更多
The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:...Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:A retrospective analysis of patients who underwent laparoscopic or robotic surgery for insulinoma at our center between September 2007 and December 2019 was conducted.The demographic,perioperative and postoperative follow-up results were compared between the laparoscopic and robotic groups.Results:A total of 85 patients were enrolled,including 36 with laparoscopic approach and 49 with robotic approach.Enucleation was the preferred surgical procedure.Fifty-nine patients(69.4%)underwent enucleation;among them,26 and 33 patients underwent laparoscopic and robotic surgery,respectively.Robotic enucleation had a lower conversion rate to laparotomy(0 vs.19.2%,P=0.013),shorter operative time(102.0 vs.145.5 min,P=0.008)and shorter postoperative hospital stay(6.0 vs.8.5 d,P=0.002)than laparoscopic enucleation.There were no differences between the groups in terms of intraoperative blood loss,the rates of postoperative pancreatic fistula and complications.After a median follow-up of 65 months,two patients in the laparoscopic group developed a functional recurrence and none of the patients in the robotic group had a recurrence.Conclusions:Robotic enucleation can reduce the conversion rate to laparotomy and shorten operative time,which might lead to a reduction in postoperative hospital stay.展开更多
Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligen...Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.展开更多
Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to o...Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
BACKGROUND Hemolymphangioma of the jejunum is rare and lacks clinical specificity,and can manifest as gastrointestinal bleeding,abdominal pain,and intestinal obstruction.Computed tomography,magnetic resonance imaging,...BACKGROUND Hemolymphangioma of the jejunum is rare and lacks clinical specificity,and can manifest as gastrointestinal bleeding,abdominal pain,and intestinal obstruction.Computed tomography,magnetic resonance imaging,and other examinations show certain characteristics of the disease,but lack accuracy.Although capsule endoscopy and enteroscopy make up for this deficiency,the diagnosis also still re-quires pathology.CASE SUMMARY A male patient was admitted to the hospital due to abdominal distension and abdominal pain,but a specific diagnosis by computed tomography examination was not obtained.Partial resection of the small intestine was performed by robotic surgery,and postoperative pathological biopsy confirmed the diagnosis of hemo-lymphangioma.No recurrence in the follow-up examination was observed.CONCLUSION Robotic surgery is an effective way to treat hemolymphangioma through minima-lly invasive techniques under the concept of rapid rehabilitation.展开更多
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasin...Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasing reports of robotic-assisted bladder neck reconstruction in the literature.However,existing studies are small,heterogeneous case series.The objective of this study was to perform a systematic review of robotic-assisted bladder neck reconstruction to better evaluate patency and incontinence outcomes.Methods:We performed a systematic review of PubMed from first available date to May 2023 for all studies evaluating robotic-assisted reconstructive surgery of the bladder neck in adult men.Articles in non-English,author replies,editorials,pediatric-based studies,and reviews were excluded.Outcomes of interest were patency and incontinence rates,which were pooled when appropriate.Results:After identifying 158 articles on initial search,we included only ten studies that fit all aforementioned criteria for robotic-assisted bladder neck reconstruction.All were case series published from March 2018 to March 2022 ranging from six to 32 men,with the median follow-up of 5e23 months.A total of 119 patients were included in our analysis.A variety of etiologies and surgical techniques were described.Patency rates ranged from 50%to 100%,and pooled patency was 80%(95/119).De novo incontinence rates ranged from 0%to 33%,and pooled incontinence was 17%(8/47).Our findings were limited by small sample sizes,relatively short follow-ups,and heterogeneity between studies.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.61273345)
文摘Most of the existing screw drive in-pipe robots cannot actively adjust the maximum traction capacity, which limits the adaptability to the wide range of variable environment resistance, especially in curved pipes. In order to solve this problem, a screw drive in-pipe robot based on adaptive linkage mechanism is proposed. The differential property of the adaptive linkage mechanism allows the robot to move without motion interference in the straight and varied curved pipes by adjusting inclining angles of rollers self-adaptively. The maximum traction capacity of the robot can be changed by actively adjusting the inclining angles of rollers. In order to improve the adaptability to the variable resistance, a torque control method based on the fuzzy controller is proposed. For the variable environment resistance, the proposed control method can not only ensure enough traction force, but also limit the output torque in a feasible region. In the simulations, the robot with the proposed control method is compared to the robot with fixed inclining angles of rollers. The results show that the combination of the torque control method and the proposed robot achieves the better adaptability to the variable resistance in the straight and curved pipes.
基金Project(2007AA04Z256) supported by the National High-Tech Research and Development Program of China
文摘A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN.
基金Supported by the High Technology Research and Development Programme of China (No. 2006AA04Z205)
文摘A global localization system of in-pipe robot is introduced in this paper.Global position system(GPS)is applied to monitor the motion of robot along the whole pipeline which is equally divided intomany segments by tracking stations.The definite segment in which robot existing can be detected and thisis long-range localization.Ultra-long wave(ULW)is adopted to solve the problem of metallic shieldingand realize effective communication between inside and outside of pipeline.ULW emitter is carried byrobot.When the plant is broken or defects on pipe-wall are inspected,the robot will stop moving.Anten-na array is presented and disposed upon the definite segment to search the accurate location of robot,andthis is short-range localization.In this paper,five-antenna array is adopted and an effective linear signalfusion algorithm is presented.The localization precision reaches R < 25cm.By tests in Shengli oil field,the whole system is verified with robust solutions.
基金supported by the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(1005-IZD23002-25)the National Natural Science Foundation of China under Grant nos.52075248.
文摘In-pipe robots have been widely used in pipes-with smooth inner walls.However,current in-pipe robots face challenges in terms of moving past obstacles and climbing in marine-vessel pipeline systems,which are affected by marine biofouling and electrochemical corrosion.This paper takes inspiration from the dual-hook structure of Trypoxylus dichotomus’s feet and gecko‑like dry adhesives,proposing an in-pipe robot that is capable of climbing on rough and smooth pipe inwalls.The combination of the bioinspired hook and dry adhesives allows the robot to stably attach to rough or smooth pipe inwalls,while the wheel-leg hybrid mechanism provides better conditions for obstacle traversal.The paper explores the attachment and obstacle-surmounting mechanisms of the robot.Moreover,motion strategies for the robot are devised based on different pipe structural features.The experiments showed that this robot can adapt to both smooth and rough pipe environments simultaneously,and its motion performance is superior to conventional driving mechanisms.The robot’s active turning actuators also enable it to navigate through horizontally or vertically oriented 90°bends.
基金supported by the National Natural Science Foundation of China(Grant No.61273345)
文摘A screw drive in-pipe robot is promising inspection equipment for small pipes. However, most of the existing screw drive in-pipe robots have problems of motion interference and slipping inside curved or irregular pipes. These problems result from the coupled relations among the steering motion, the motion speed and the load ability of the robot. In order to deal with the problems, the axiomatic design (AD) theory is applied to evaluate and analyze the existing designs. Then an uncoupled con- cept design based on the AD theory is proposed and the complete AD decomposition process is presented. After that, the pro- posed robot based on a tri-axial differential angle modulation mechanism is designed to realize the uncoupled concept. Finally, the uncoupled property is verified in a dynamics simulation system. The simulation results indicate that the mc tion speed, load ability and steering motion of the proposed robot can be adjusted individually compared with the robots taat have inclin- ing-angle-fixed rollers. Owing to the uncoupled design, the proposed robot can mechanically adapt to straight pipes and curved pipes with less roller slipping.
文摘To improve the safety and efficiency of polishing operations in circular boiler headers, a new type of wheel-drive polishing robot was developed in this study. The robot was designed to grind weld beads on the inner walls of pipes in diameter between 550 mm and 714 mm. The robot consists of a moving structure, a positioning structure, and a polishing structure. Charge coupled device (CCD) cameras and line lasers are used in the robot's vision system, thus the robot can be manually controlled to move, locate, and grind quickly and accurately. The experimental results showed that the robot performed well in practical applications.
基金National Natural Science Foundation of China,52005369Open Project Fund of Tianjin Key Laboratory of Integrated Design and Online Monitoring of Light Industry and Food Engineering Machinery and Equipment,2020LIMFE05.
文摘Soft in-pipe robot has good adaptability in tubular circumstances,while its rigidity is insufficient,which affects the traction performance.This paper proposes a novel worm-like in-pipe robot with a rigid and soft structure,which not only has strong traction ability but also flexible mobility in the shaped pipes.Imitating the structure features of the earthworm,the bionic in-pipe robot structure is designed including two soft anchor parts and one rigid telescopic part.The soft-supporting mechanism is the key factor for the in-pipe robot excellent performance,whose mathematical model is established and the mechanical characteristics are analyzed,which is used to optimize the structural parameters.The prototype is developed and the motion control strategy is planned.Various performances of the in-pipe robot are tested,such as the traction ability,moving velocity and adaptability.For comparative analysis,different operating scenarios are built including the horizontal pipe,the inclined pipe,the vertical pipe and other unstructured pipes.The experiment results show that the in-pipe robot is suitable for many kinds of pipe applications,the average traction is about 6.8N,the moving velocity is in the range of 9.5 to 12.7 mm/s.
基金High Technology Research and Development( 863 ) Programe of China ( No.2002AA442110) The Cooperative Fund ofYunnan Province and Shanghai JiaotongUniv.(No.2001KABAA00A025)
文摘A new type of in-pipe mobile robot was designed and developed on the basis of w heel in-pipe robot and crawler in-pipe robot. The three sets of driving wheels circumferentially 120° apart in the cross section, both front and rear driving wheels are distributed on the same parallelogram mechanis m. The driving motor drives the three sets of driving wheels by worm couple, the regulating motor makes the three sets of driving wheels push against the pipe inwall with stable and adequate pressing force by the ball screw pair and p ressure sensor, so the in-pipe robot can provide adequate and stable traction force. The robot mechanism is simple and sm all in size and work reliably . It is particularly suitable to the pipe with diameter 400~650 mm.
文摘In a bustling street in Wenzhou,east China’s Zhejiang Province,a futuristic ball-shaped robot recently made waves online as it patrolled alongside uniformed police officers.Developed through a collaboration between Wenzhou police and Zhejiang University,the RT-G is no ordinary robot.According to Huang Sufeng,deputy commander of a special patrol police brigade in Wenzhou,east China’s Zhejiang Province.
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
文摘Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:A retrospective analysis of patients who underwent laparoscopic or robotic surgery for insulinoma at our center between September 2007 and December 2019 was conducted.The demographic,perioperative and postoperative follow-up results were compared between the laparoscopic and robotic groups.Results:A total of 85 patients were enrolled,including 36 with laparoscopic approach and 49 with robotic approach.Enucleation was the preferred surgical procedure.Fifty-nine patients(69.4%)underwent enucleation;among them,26 and 33 patients underwent laparoscopic and robotic surgery,respectively.Robotic enucleation had a lower conversion rate to laparotomy(0 vs.19.2%,P=0.013),shorter operative time(102.0 vs.145.5 min,P=0.008)and shorter postoperative hospital stay(6.0 vs.8.5 d,P=0.002)than laparoscopic enucleation.There were no differences between the groups in terms of intraoperative blood loss,the rates of postoperative pancreatic fistula and complications.After a median follow-up of 65 months,two patients in the laparoscopic group developed a functional recurrence and none of the patients in the robotic group had a recurrence.Conclusions:Robotic enucleation can reduce the conversion rate to laparotomy and shorten operative time,which might lead to a reduction in postoperative hospital stay.
文摘Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.
文摘Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-015A and No.TJYXZDXK-058B.
文摘BACKGROUND Hemolymphangioma of the jejunum is rare and lacks clinical specificity,and can manifest as gastrointestinal bleeding,abdominal pain,and intestinal obstruction.Computed tomography,magnetic resonance imaging,and other examinations show certain characteristics of the disease,but lack accuracy.Although capsule endoscopy and enteroscopy make up for this deficiency,the diagnosis also still re-quires pathology.CASE SUMMARY A male patient was admitted to the hospital due to abdominal distension and abdominal pain,but a specific diagnosis by computed tomography examination was not obtained.Partial resection of the small intestine was performed by robotic surgery,and postoperative pathological biopsy confirmed the diagnosis of hemo-lymphangioma.No recurrence in the follow-up examination was observed.CONCLUSION Robotic surgery is an effective way to treat hemolymphangioma through minima-lly invasive techniques under the concept of rapid rehabilitation.
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
文摘Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasing reports of robotic-assisted bladder neck reconstruction in the literature.However,existing studies are small,heterogeneous case series.The objective of this study was to perform a systematic review of robotic-assisted bladder neck reconstruction to better evaluate patency and incontinence outcomes.Methods:We performed a systematic review of PubMed from first available date to May 2023 for all studies evaluating robotic-assisted reconstructive surgery of the bladder neck in adult men.Articles in non-English,author replies,editorials,pediatric-based studies,and reviews were excluded.Outcomes of interest were patency and incontinence rates,which were pooled when appropriate.Results:After identifying 158 articles on initial search,we included only ten studies that fit all aforementioned criteria for robotic-assisted bladder neck reconstruction.All were case series published from March 2018 to March 2022 ranging from six to 32 men,with the median follow-up of 5e23 months.A total of 119 patients were included in our analysis.A variety of etiologies and surgical techniques were described.Patency rates ranged from 50%to 100%,and pooled patency was 80%(95/119).De novo incontinence rates ranged from 0%to 33%,and pooled incontinence was 17%(8/47).Our findings were limited by small sample sizes,relatively short follow-ups,and heterogeneity between studies.