In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating ...Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.展开更多
Measuring accuracy of inclinometer based on accelerometer is mainly influenced by the adopted accelerometer sensor.To improve the measuring accuracy of the inclinometer,the structure of the measuring system is given a...Measuring accuracy of inclinometer based on accelerometer is mainly influenced by the adopted accelerometer sensor.To improve the measuring accuracy of the inclinometer,the structure of the measuring system is given and measuring principle is analyzed,and the error model is established in this paper.Furthermore,the model is verified by simulation and experiment,which not only gives the smallest errors of the measured pitch and roll,but also lays foundation for sensor selection,error analysis and error compensation.The results show that the error model is of practical value.展开更多
In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to co...In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller.展开更多
For lack of laboratory and field performance data on stabilization of reclaimed asphalt pavement (RAP) aggregate and stabilized soil (S) for road bases and subbases construction, the influences of RAP/S ratio, cem...For lack of laboratory and field performance data on stabilization of reclaimed asphalt pavement (RAP) aggregate and stabilized soil (S) for road bases and subbases construction, the influences of RAP/S ratio, cement and fly ash content, modifying agent (MA) on the compact, unconfined compressive strength, indirect tensile strength and water stability of the CIR mixtures were investigated. The experimental results showed that the maximum dry density and the optimum moisture content of the mixture changed significantly with the RAP/S ratio and cement-fly ash content. Unconfined compressive strength, indirect tensile strength and water stability were improved significantly by the addition of MA, and the water stability was improved by nearly 20% on average. Scanning electron microscopy(SEM) images indicated that MA accelerated the hydration of cement-fly ash system. Needle-like AFt and fibrous C-S-H gel were observed in the mixtures, which resulted in the cementation effect among the CIR mixture particles and a more compact microstructure. All these could be the cause of high strength of the CIR mixtures with MA.展开更多
In order to</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> reduce the influence of nonlinear </span><span...In order to</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> reduce the influence of nonlinear </span><span style="font-family:Verdana;">characteristic</span><span style="font-family:Verdana;"> and temperature on the measuring accuracy of </span><span style="font-family:Verdana;">inclinometer</span><span style="font-family:Verdana;">, the application of </span><span style="font-family:Verdana;">polynomial</span><span style="font-family:Verdana;"> fitting principle to compensate </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> measuring error of </span><span style="font-family:Verdana;">inclinometer</span><span style="font-family:Verdana;"> is studied. According to the analysis of the experimental data of inclinometer, a polynomial model of the nonlinear error and the measured value is constructed, and then the relation between the coefficient of the polynomial model and the temperature is obtained by fitting, and </span><span style="font-family:Verdana;">finally</span><span style="font-family:Verdana;"> the function of the measurement error of inclinometer on the measured inclination and temperature is obtained. The results show that this method is feasible and effective, which can not only reduce the influence of </span><span style="font-family:Verdana;">temperature,</span><span style="font-family:Verdana;"> but also correct its nonlinear error.展开更多
The classical Gauss-Jordan method for matrix inversion involves augmenting the matrix with a unit matrix and requires a workspace twice as large as the original matrix as well as computational operations to be perform...The classical Gauss-Jordan method for matrix inversion involves augmenting the matrix with a unit matrix and requires a workspace twice as large as the original matrix as well as computational operations to be performed on both the original and the unit matrix. A modified version of the method for performing the inversion without explicitly generating the unit matrix by replicating its functionality within the original matrix space for more efficient utilization of computational resources is presented in this article. Although the algorithm described here picks the pivots solely from the diagonal which, therefore, may not contain a zero, it did not pose any problem for the author because he used it to invert structural stiffness matrices which met this requirement. Techniques such as row/column swapping to handle off-diagonal pivots are also applicable to this method but are beyond the scope of this article.展开更多
This paper presents some insights on the state-of-the-art practice that has been utilized recently in the inplace structural strength and fatigue analysis for topsides on deepwater floating platforms such as tension l...This paper presents some insights on the state-of-the-art practice that has been utilized recently in the inplace structural strength and fatigue analysis for topsides on deepwater floating platforms such as tension leg plat-form (TLP) and semi-submersibles. Emphases are put on analysis software,geometric and mass modeling,hydro-dynamic loading and its mapping,and analysis procedures. In addition,for the in-place analysis using structure analysis computer system (SACS),the procedure of Visual Basic for Application (VBA) is developed to map AQWA-LINE hydrodynamic loading to the SACS integrated hull/topsides model;for the in-place analysis using structure engineering system analysis model (SESAM),many computer aided applications are made to aid the post-processing. These applications have been used in structural analyses for a few TLP and semi-submersible plat-form topsides,and are briefly introduced in this paper.展开更多
A new research method was proposed(A/S method) to study the components and properties of reclained asphalt mixture(RAP). The RAP was divided into two main parts, one was marked with A that included all the reclaim...A new research method was proposed(A/S method) to study the components and properties of reclained asphalt mixture(RAP). The RAP was divided into two main parts, one was marked with A that included all the reclaimed old asphalt materials(including some parts of particle materials covered by asphalt), the other was marked with S which mainly included works soil in the road structure. The actual working conditions were simulated by this kind of new method, and the adaption between the RAP properties, A/S, and the content of cementitious materials were studied. The research indicated that the real working condition could be simulated effectively by means of A/S method. It was also showed that high content of cement could improve the overall performance of RAP significantly, but it would have a negative effect on the properties of RAP if the types and sizes of aggregate particles in RAP mixture were too single. The optimum water content and maximum dry density could not be regarded as the primary basis to evaluate the overall performance of RAP, when S=0 in the experiments, although the maximum density of samples was bigger than that with A/S=1/1, the samples were not strong enough and they were easy to collapse, which indicated that component design of RAP played a great role in improving the overall properties of RAP and the comprehensive tests should be considered to evaluate the stability of RAP. Low frequency load in high temperature environment had the negative effect on the overall stability of RAP, and factors such as the loading state of the materials, the hydration degree of cementitious materials, and the aggregate gradation in the mixture were the determining factors for improving the overall performance of RAP.展开更多
A modified version of the Gauss-Jordan algorithm for performing In-Place matrix inversion without using an augmenting unit matrix was described in a previous article by the author. He had also developed several Struct...A modified version of the Gauss-Jordan algorithm for performing In-Place matrix inversion without using an augmenting unit matrix was described in a previous article by the author. He had also developed several Structural Engineering softwares during his career using that method as their analysis engine. He chose matrix inversion because it was suitable for in-core solution of large numbers of vectors for the same set of equations as encountered in structural analysis of moving, dynamic and seismic loadings. The purpose of this article is to provide its readers with its theoretical background and detailed computations of an In-Place matrix inversion task as well as a Visual Basic routine of the algorithm for direct incorporation into Visual Basic 6TM softwares and Visual Basic for ApplicationsTM macros in MS-ExcelTM spreadsheets to save them time and effort of software development.展开更多
Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt...Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt was made to predict the performance, particularly low-temperature cracking resistance characteristics of CIR mixtures. These were prepared with the mix design procedure developed at the URI (University of Rhode Island) for the FHWA (Federal Highway Administration) to reduce wide variations in the application of CIR mixtures production. This standard was applied to RAP (reclaimed asphalt pavement) to produce CIR mixtures with CSS-Ih asphalt emulsion as the additive. By adjusting the number of gyrations of the SGC (Superpave gyratory compactor) for compaction, the field density of 130 pcf was represented accurately. To secure a base line, HMA (hot mix asphalt) samples were produced according to the Superpave volumetric mix design procedure. The specimens were tested using the IDT (indirect tensile) tester according to the procedure of AASHTO T 322 procedure at temperatures of-20, -10 and 0 ℃ (-4, 14, and 32°F, respectively). The obtained results for the creep compliance and tensile strength were used as input data for the MEPDG (mechanistic empirical pavement design guide). The analysis results indicated that no thermal or low-temperature cracking is expected over the entire analysis period of 20 years for both HMA and CIR mixtures. Thus, it appears that CIR is a sustainable rehabilitation technique which is also suitable for colder climates, and it is recommended to conduct further investigation of load-related distresses such as rutting and fatigue cracking.展开更多
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
基金Project(2017JM5077)supported by the Natural Science Basic Research Plan in Shaanxi Province,ChinaProjects(300102259109,300102259306)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.
文摘Measuring accuracy of inclinometer based on accelerometer is mainly influenced by the adopted accelerometer sensor.To improve the measuring accuracy of the inclinometer,the structure of the measuring system is given and measuring principle is analyzed,and the error model is established in this paper.Furthermore,the model is verified by simulation and experiment,which not only gives the smallest errors of the measured pitch and roll,but also lays foundation for sensor selection,error analysis and error compensation.The results show that the error model is of practical value.
基金Supported by the National Natural Science Foundation of China (20476007, 20676013)
文摘In this study, Saccharomyces cerevisiae (baker's yeast) was produced in a fed-batch bioreactor at the optimal dissolved oxygen concentration (DOC) and growth medium temperature. However, it is very difficult to control the DOC using conventional controllers because of the poorly understood and constantly changing dynamics of the bioprocess. A generalized predictive controller (GPC) based on a nonlinear autoregressive integrated moving average exogenous (NARIMAX) model is presented to stabilize the DOC by manipulation of air flow rate. The NARIMAX model is built by an improved recursive least-squares support vector machine, which is trained by an in-place computation scheme and avoids the computation of the inverse of a large matrix and memory reallocation. The proposed nonlinear GPC algorithm requires little preliminary knowledge of the fermentation process, and directly obtains the nonlinear model in matrix form by using iterative multiple modeling instead of linearization at each sampling period. By application of an on-line bioreactor control, experimental results demonstrate the robustness, effectiveness and advantages of the new controller.
基金Funded by the High-Tech Research and Development Program (863 National Program) of China(No.2009AA11Z106)
文摘For lack of laboratory and field performance data on stabilization of reclaimed asphalt pavement (RAP) aggregate and stabilized soil (S) for road bases and subbases construction, the influences of RAP/S ratio, cement and fly ash content, modifying agent (MA) on the compact, unconfined compressive strength, indirect tensile strength and water stability of the CIR mixtures were investigated. The experimental results showed that the maximum dry density and the optimum moisture content of the mixture changed significantly with the RAP/S ratio and cement-fly ash content. Unconfined compressive strength, indirect tensile strength and water stability were improved significantly by the addition of MA, and the water stability was improved by nearly 20% on average. Scanning electron microscopy(SEM) images indicated that MA accelerated the hydration of cement-fly ash system. Needle-like AFt and fibrous C-S-H gel were observed in the mixtures, which resulted in the cementation effect among the CIR mixture particles and a more compact microstructure. All these could be the cause of high strength of the CIR mixtures with MA.
文摘In order to</span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> reduce the influence of nonlinear </span><span style="font-family:Verdana;">characteristic</span><span style="font-family:Verdana;"> and temperature on the measuring accuracy of </span><span style="font-family:Verdana;">inclinometer</span><span style="font-family:Verdana;">, the application of </span><span style="font-family:Verdana;">polynomial</span><span style="font-family:Verdana;"> fitting principle to compensate </span><span style="font-family:Verdana;">the</span><span style="font-family:Verdana;"> measuring error of </span><span style="font-family:Verdana;">inclinometer</span><span style="font-family:Verdana;"> is studied. According to the analysis of the experimental data of inclinometer, a polynomial model of the nonlinear error and the measured value is constructed, and then the relation between the coefficient of the polynomial model and the temperature is obtained by fitting, and </span><span style="font-family:Verdana;">finally</span><span style="font-family:Verdana;"> the function of the measurement error of inclinometer on the measured inclination and temperature is obtained. The results show that this method is feasible and effective, which can not only reduce the influence of </span><span style="font-family:Verdana;">temperature,</span><span style="font-family:Verdana;"> but also correct its nonlinear error.
文摘The classical Gauss-Jordan method for matrix inversion involves augmenting the matrix with a unit matrix and requires a workspace twice as large as the original matrix as well as computational operations to be performed on both the original and the unit matrix. A modified version of the method for performing the inversion without explicitly generating the unit matrix by replicating its functionality within the original matrix space for more efficient utilization of computational resources is presented in this article. Although the algorithm described here picks the pivots solely from the diagonal which, therefore, may not contain a zero, it did not pose any problem for the author because he used it to invert structural stiffness matrices which met this requirement. Techniques such as row/column swapping to handle off-diagonal pivots are also applicable to this method but are beyond the scope of this article.
文摘This paper presents some insights on the state-of-the-art practice that has been utilized recently in the inplace structural strength and fatigue analysis for topsides on deepwater floating platforms such as tension leg plat-form (TLP) and semi-submersibles. Emphases are put on analysis software,geometric and mass modeling,hydro-dynamic loading and its mapping,and analysis procedures. In addition,for the in-place analysis using structure analysis computer system (SACS),the procedure of Visual Basic for Application (VBA) is developed to map AQWA-LINE hydrodynamic loading to the SACS integrated hull/topsides model;for the in-place analysis using structure engineering system analysis model (SESAM),many computer aided applications are made to aid the post-processing. These applications have been used in structural analyses for a few TLP and semi-submersible plat-form topsides,and are briefly introduced in this paper.
基金Funded by the Natural Science Foundation of Fujian Province(Nos.2016J01241 and 2016H0021)the Science & Technology Pillar Program of Fujian Provincial Education Department(No.Z1425072)
文摘A new research method was proposed(A/S method) to study the components and properties of reclained asphalt mixture(RAP). The RAP was divided into two main parts, one was marked with A that included all the reclaimed old asphalt materials(including some parts of particle materials covered by asphalt), the other was marked with S which mainly included works soil in the road structure. The actual working conditions were simulated by this kind of new method, and the adaption between the RAP properties, A/S, and the content of cementitious materials were studied. The research indicated that the real working condition could be simulated effectively by means of A/S method. It was also showed that high content of cement could improve the overall performance of RAP significantly, but it would have a negative effect on the properties of RAP if the types and sizes of aggregate particles in RAP mixture were too single. The optimum water content and maximum dry density could not be regarded as the primary basis to evaluate the overall performance of RAP, when S=0 in the experiments, although the maximum density of samples was bigger than that with A/S=1/1, the samples were not strong enough and they were easy to collapse, which indicated that component design of RAP played a great role in improving the overall properties of RAP and the comprehensive tests should be considered to evaluate the stability of RAP. Low frequency load in high temperature environment had the negative effect on the overall stability of RAP, and factors such as the loading state of the materials, the hydration degree of cementitious materials, and the aggregate gradation in the mixture were the determining factors for improving the overall performance of RAP.
文摘A modified version of the Gauss-Jordan algorithm for performing In-Place matrix inversion without using an augmenting unit matrix was described in a previous article by the author. He had also developed several Structural Engineering softwares during his career using that method as their analysis engine. He chose matrix inversion because it was suitable for in-core solution of large numbers of vectors for the same set of equations as encountered in structural analysis of moving, dynamic and seismic loadings. The purpose of this article is to provide its readers with its theoretical background and detailed computations of an In-Place matrix inversion task as well as a Visual Basic routine of the algorithm for direct incorporation into Visual Basic 6TM softwares and Visual Basic for ApplicationsTM macros in MS-ExcelTM spreadsheets to save them time and effort of software development.
文摘Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt was made to predict the performance, particularly low-temperature cracking resistance characteristics of CIR mixtures. These were prepared with the mix design procedure developed at the URI (University of Rhode Island) for the FHWA (Federal Highway Administration) to reduce wide variations in the application of CIR mixtures production. This standard was applied to RAP (reclaimed asphalt pavement) to produce CIR mixtures with CSS-Ih asphalt emulsion as the additive. By adjusting the number of gyrations of the SGC (Superpave gyratory compactor) for compaction, the field density of 130 pcf was represented accurately. To secure a base line, HMA (hot mix asphalt) samples were produced according to the Superpave volumetric mix design procedure. The specimens were tested using the IDT (indirect tensile) tester according to the procedure of AASHTO T 322 procedure at temperatures of-20, -10 and 0 ℃ (-4, 14, and 32°F, respectively). The obtained results for the creep compliance and tensile strength were used as input data for the MEPDG (mechanistic empirical pavement design guide). The analysis results indicated that no thermal or low-temperature cracking is expected over the entire analysis period of 20 years for both HMA and CIR mixtures. Thus, it appears that CIR is a sustainable rehabilitation technique which is also suitable for colder climates, and it is recommended to conduct further investigation of load-related distresses such as rutting and fatigue cracking.