期刊文献+
共找到55,556篇文章
< 1 2 250 >
每页显示 20 50 100
Achieving high ductility and low in-plane anisotropy in magnesium alloy through a novel texture design strategy 被引量:1
1
作者 Shi Liu Cheng Wang +3 位作者 Hong Ning Zhao-Yuan Meng Kai Guan Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2863-2873,共11页
Texture regulation is a prominent method to modify the mechanical properties and anisotropy of magnesium alloy.In this work,the Mg-1Al-0.3Ca-0.5Mn-0.2Gd(wt.%)alloy sheet with TD-tilted and circular texture was fabrica... Texture regulation is a prominent method to modify the mechanical properties and anisotropy of magnesium alloy.In this work,the Mg-1Al-0.3Ca-0.5Mn-0.2Gd(wt.%)alloy sheet with TD-tilted and circular texture was fabricated by unidirectional rolling(UR)and multidirectional rolling(MR)method,respectively.Unlike generating a strong in-plane mechanical anisotropy in conventional TD-tilted texture,the novel circular texture sample possessed a weak in-plane yield anisotropy.This can be rationalized by the similar proportion of soft grains with favorable orientation for basalslip and{10.12}tensile twinning during the uniaxial tension of circular-texture sample along different directions.Moreover,compared with the TD-tilted texture,the circular texture improved the elongation to failure both along the rolling direction(RD)and transverse direction(TD).By quasi-in-situ EBSD-assisted slip trace analysis,higher activation of basal slip was observed in the circular-texture sample during RD tension,contributing to its excellent ductility.When loading along the TD,the TD-tilted texture promoted the activation of{10.12}tensile twins significantly,thus providing nucleation sites for cracks and deteriorating the ductility.This research may shed new insights into the development of formable and ductile Mg alloy sheets by texture modification. 展开更多
关键词 Magnesium alloy TD-tilted texture Circular texture in-plane yield anisotropy DUCTILITY
下载PDF
Recent advances in the in-plane shear testing of Mg alloy sheets 被引量:2
2
作者 Mahesh Panchal Lalit Kaushik +3 位作者 Ravi K.R Rajesh Khatirkar Shi-Hoon Choi Jaiveer Singh 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第2期405-424,共20页
Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obta... Sheet-metal products are integral parts of engineering industries and academia research. Various testing techniques have revealed the deformation behaviors of sheet metals under complex stress states. Information obtained from tensile and compression tests, however, are insufficient for the identification of material parameters relevant to modern constitutive laws, which require experimental setups capable of generating various loading conditions and applying great amounts of strain to sheet metals. In-plane shear testing has emerged as an important method to overcome the challenges associated with tension and compression tests and can provide additional information about deformation behaviors under large plastic strains. Materials such as Mg alloys with poor levels of both ductility and formability cannot accommodate large plastic strains. Therefore, tension and compression tests have limitations in explaining the material behaviors that occur during sheet metal forming where large plastic strains are introduced. Many studies have been conducted to explain the deformation behaviors of Mg alloys under shear deformation techniques. These include severe plastic deformation(SPD), especially the equal channel angular pressing(ECAP)and equal channel angular extrusion, rolling combined with shear deformation i.e. differential speed rolling(DSR), and also in-plane shear for sheet metals, particularly under large levels of plastic strain. These in-plane shear technique involves the Miyauchi shear test, ASTM shear test, and twin bridge shear tests. Moreover, many experimental results have revealed that the evolution of microstructure and texture during in-plane shear is closely related to the failure behavior of materials. Therefore, this review is focused on techniques for in-plane shear testing that have been reported thus far, on the effect of in-plane shear on the microstructure development of Mg alloy sheets, and on the usefulness of in-plane shear testing to evaluate the formability of Mg alloy sheets. 展开更多
关键词 Mg alloys in-plane shear TEXTURE FORMABILITY EBSD
下载PDF
Recent advances and key opportunities on in-plane micro-supercapacitors:From functional microdevices to smart integrated microsystems 被引量:1
3
作者 Jieqiong Qin Hongtao Zhang +4 位作者 Zhi Yang Xiao Wang Pratteek Das Feng Zhou Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期410-431,I0010,共23页
The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalit... The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief. 展开更多
关键词 Micro-supercapacitors in-plane Functionalization Integrated microsystem Energy storage
下载PDF
One-photo excitation pathway in 2D in-plane heterostructures for effective visible-light-driven photocatalytic degradation 被引量:2
4
作者 Mengchi Liu Yiwen Cheng +4 位作者 Yuee Xie Yingcong Wei Jinhui Xing Yuanping Chen Jing Xu 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期42-52,共11页
Broad-spectrum absorption and highly effective charge-carrier separation are two essential requirements to improve the photocatalytic performance of semiconductor-based photocatalysts.In this work,a fascinating one-ph... Broad-spectrum absorption and highly effective charge-carrier separation are two essential requirements to improve the photocatalytic performance of semiconductor-based photocatalysts.In this work,a fascinating one-photon system is reported by rationally fabricating 2D in-plane Bi_(2)O_(3)/BiOCl(i-Cl)heterostructures for efficient photocatalytic degradation of RhB and TC.Systematic investigations revealed that the matched band structure generated an internal electric field and a chemical bond connection between the Bi_(2)O_(3)and BiOCl in the Bi_(2)O_(3)/BiOCl composite that could effectively improve the utilization ratio of visible light and the separation effectivity of photo-generated carriers in space.The formed interactions at the 2D in-plane heterojunction interface induced the one-photon excitation pathway which has been confirmed by the experiment and DFT calculations.As a result,the i-Cl samples showed significantly enhanced photocatalytic efficiency towards the degradation of RhB and TC(RhB:0.106 min^(-1);TC:0.048 min^(-1))under visible light.The degradation activities of RhB and TC for i-Cl were 265.08 and 4.08times that of pure BiOCl,as well as 9.27 and 2.14 times that of mechanistically mixed Bi_(2)O_(3)/BiOCl samples,respectively.This work provides a logical strategy to construct other 2D in-plane heterojunctions with a one-photon excitation pathway with enhanced performance. 展开更多
关键词 photocatalysis CAU-17 Bismuth oxyhalides one-photon excitation pathway 2D in-plane heterojunction
下载PDF
In-plane Tensile Behaviors of Bi-axial Warp-Knitted Composites under Quasi-static and High Strain Rate Loading 被引量:1
5
作者 董凯 彭晓 +5 位作者 安若达 张威 张佳锦 金利民 顾伯洪 孙宝忠 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期487-491,共5页
The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direct... The in-plane tensile behaviors of bi-axial warp-knitted(BWK) composites under quasi-static and high strain rates loading were experimentally analyzed in this article. The tensile tests were conducted along warp direction( 0°) and weft direction( 90°) at quasi-static rate of 0. 001 s^(-1) and high strain rates ranging from 1 450 to 2 540 s^(-1),respectively. It is found that the significant strain rate sensitivity can be observed in the stress-strain curves of BWK composites. The fracture morphologies of BWK composites demonstrate that the tensile failure modes are shear failure and fiber breakage under the quasi-static testing condition while interface failure and fibers pullout are at high strain rates. 展开更多
关键词 bi-axial warp-knitted(BWK) composite in-plane tensile behavior strain rate split Hopkinson tension bar(SHTB)
下载PDF
Present-day Upper-crustal Strain Rate Field in Southeastern Tibet and its Geodynamic Implications:Constraints from GPS Measurements with ABIC Method 被引量:1
6
作者 YANG Shaohua PAN Jiawei +1 位作者 LI Haibing SHI Yaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期265-275,共11页
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne... The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust. 展开更多
关键词 strain rate differential escape ABIC GPS southeastern Tibet
下载PDF
Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation 被引量:1
7
作者 Guangfu Qian Wei Chen +5 位作者 Jinli Chen Li Yong Gan Tianqi Yu Miaojing Pan Xiaoyan Zhuo Shibin Yin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期684-694,共11页
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr... Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation. 展开更多
关键词 Carbon-encapsulated Tensile strain Catalyst Oxygen evolution reaction Urea oxidation reaction
下载PDF
Microstructure and strain analysis of GaN epitaxial films using in-plane grazing incidence x-ray diffraction 被引量:1
8
作者 郭希 王玉田 +8 位作者 赵德刚 江德生 朱建军 刘宗顺 王辉 张书明 邱永鑫 徐科 杨辉 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第7期471-478,共8页
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in... This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x- ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence t of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of-0.89 GPa. 展开更多
关键词 in-plane grazing incidence x-ray diffraction gallium nitride mosaic structure biaxialstrain
下载PDF
Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading 被引量:1
9
作者 Cheng LI Chengxiu ZHU +1 位作者 C.W.LIM Shuang LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第12期1821-1840,共20页
The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite(FG-CNTRC)shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is ... The nonlinear in-plane instability of functionally graded carbon nanotube reinforced composite(FG-CNTRC)shallow circular arches with rotational constraints subject to a uniform radial load in a thermal environment is investigated.Assuming arches with thickness-graded material properties,four different distribution patterns of carbon nanotubes(CNTs)are considered.The classical arch theory and Donnell’s shallow shell theory assumptions are used to evaluate the arch displacement field,and the analytical solutions of buckling equilibrium equations and buckling loads are obtained by using the principle of virtual work.The critical geometric parameters are introduced to determine the criteria for buckling mode switching.Parametric studies are carried out to demonstrate the effects of temperature variations,material parameters,geometric parameters,and elastic constraints on the stability of the arch.It is found that increasing the volume fraction of CNTs and distributing CNTs away from the neutral axis significantly enhance the bending stiffness of the arch.In addition,the pretension and initial displacement caused by the temperature field have significant effects on the buckling behavior. 展开更多
关键词 functional gradient carbon nanotube(CNT)reinforcement BUCKLING in-plane instability NONLINEAR
下载PDF
The role of strain in oxygen evolution reaction
10
作者 Zihang Feng Chuanlin Dai +5 位作者 Zhe Zhang Xuefei Lei Wenning Mu Rui Guo Xuanwen Liu Junhua You 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期322-344,I0009,共24页
The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER... The oxygen evolution reaction(OER)is a crucial step in metal-air batteries and water splitting technologies,playing a significant role in the efficiency and achievable heights of these two technologies.However,the OER is a four-step,four-electron reaction,and its slow kinetics result in high overpotentials,posing a challenge.To address this issue,numerous strategies involving modified catalysts have been proposed and proven to be highly efficient.In these strategies,the introduction of strain has been widely reported because it is generally believed to effectively regulate the electronic structure of metal sites and alter the adsorption energy of catalyst surfaces with reaction intermediates.However,strain has many other effects that are not well known,making it an important yet unexplored area.Based on this,this review provides a detailed introduction to the various roles of strain in OER.To better explain these roles,the review also presents the definition of strain and elucidates the potential mechanisms of strain in OER based on the d-band center theory and adsorption volcano plot.Additionally,the review showcases various ways of introducing strain in OER through examples reported in the latest literature,aiming to provide a comprehensive perspective for the development of strain engineering.Finally,the review analyzes the appropriate proportion of strain introduction,compares compressive and tensile strain,and examines the impact of strain on stability.And the review offers prospects for future research directions in this emerging field. 展开更多
关键词 Oxygen evolution reaction strain generation Tensile strain Compressive strain strain mechanism strain effects
下载PDF
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
11
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 strain rate strain hardening Nano rubber EPOXY Adiabatic shearing localization
下载PDF
Experimental study on time-dependent stress and strain of in-plane shear(ModeⅡ) fracture process of rock
12
作者 王志 饶秋华 谢海峰 《Journal of Central South University》 SCIE EI CAS 2008年第S1期496-499,共4页
Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that... Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain-time curve comprises three stages:the linear deformation stage,the micro-cracking stage and the macroscopic crack propagation.The strain in the direction of the original notch plane is negative,due to restraining effect of compressive loading applied to the original notch plane.Both σ1 and τmax are increased as the load increases,but the slope of τmax is larger than that of σ1 and the value of τmax is always larger than that of σ1.Therefore,τmax reaches its limited value at peak load before σ1 and results in Mode Ⅱ fracture of rock.Shear-box(i.e.compression-shear) test becomes a potential standard method for achieving the true Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock. 展开更多
关键词 TIME-DEPENDENT stress and strain MODE FRACTURE strain measurement FRACTURE mechanism FINITE element method ROCK
下载PDF
Screening of Myocardial Cardiotoxicity Induced by Anticancer Chemotherapy and the Importance of Global Longitudinal Strain
13
作者 Marguerite Téning Diouf Fatou Aw +20 位作者 Hussein Khadra Sophie Ba Doudou Diouf Michel Ngonar Sarr Joseph Salvador Mingou Malick Ndiaye Simon Antoine Sarr Momar Dioum Aliou Alassane Ngaide Serigne Mor Beye Simon Manga Alain Affangla Youssou Diouf Khadimu Rassoul Diop Malick Bodian Mohamed Leye Mouhamadou Bamba Ndiaye Alassane Mbaye Adama Kane Maboury Diao Abdoul Kane 《World Journal of Cardiovascular Diseases》 CAS 2024年第6期381-391,共11页
Introduction: The improvement of survival in patients with cancer and the expansion of therapeutic options have led to the emergence of a new profile of cardiotoxicity, specifically associated with antimitotic agents.... Introduction: The improvement of survival in patients with cancer and the expansion of therapeutic options have led to the emergence of a new profile of cardiotoxicity, specifically associated with antimitotic agents. Our study aimed to assess the incidence of chemotherapy-induced myocardial toxicity in patients with cancer. Patients and Methods: We conducted a looking-forward longitudinal cohort study including all patients admitted to the Cardiology departments of Aristide le Dantec Hospital and Dalal Jamm National Hospital Centre for apre-chemotherapy check-up. The included patients did not undergo any pre-existing cardiopathy. Results: Over a period of two years ranging from January 2019 to December 2021, a total of 37 patients were included in the study. Notably, there was a female predominance (92%) with an average age of 49.7 years ± 13.69. Breast cancer accounted for 70% of the neoplasms. Laboratory findings revealed moderate anemia in 19 patients (51%). At inclusion, the left ventricle (LV) was of normal size (LV diastole at 44.46 ± 4.97 mm). The systolic function of the left ventricle was normal in all patients, with an average ejection fraction (EF) of 63.1% ± 5.80 and a mean global longitudinal strain (GLS) of −20.4% ± 2.58. The most commonly used agents were anthracyclines. During follow-up, 3 patients (8.1%) developed clinical symptoms of left heart failure, and LV dysfunction on echocardiography was observed in 5 (13.5%) patients, with a significant decrease in EF Conclusion: The incidence of cardiac toxicity is not negligible, hence the importance of early screening. Strain imaging is an essential tool that should be performed as part of the assessment before chemotherapy and re-evaluated during treatment. 展开更多
关键词 Cancer CHEMOTHERAPY Global Longitudinal strain CARDIOTOXICITY
下载PDF
In-Situ Atomic-Scale Observation of Brownmillerite to Ruddlesden-Popper Phase Transition Tuned by Epitaxial Strain in Cobaltites
14
作者 林挺 高昂 +6 位作者 汤哲歆 林炜光 孙慕华 张庆华 王雪锋 郭尔佳 谷林 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第4期152-158,共7页
Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelate... Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity,ferromagnetism,and ion conductivity in perovskiterelated oxides.However,atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood.Here we investigate the atomic structure evolution of LaCoO_(3) films upon oxygen extraction and subsequent Co migration,focusing on the key role of epitaxial strain.The brownmillerite to Ruddlesden-Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive-and tensile-strained cobaltites,which could be attributed to in-plane and out-of-plane Ruddlesden-Popper stacking faults,respectively.A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO_(2.5),while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation.Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary,whereas the latter one is associated with an edge dislocation combined with antiphase boundary.These findings provide a chemomechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films. 展开更多
关键词 strainED Phase OXIDES
下载PDF
Frequency-dependent Electrical Capacitance and Resistance of Ultra-high Performance Concrete and Their Responses to Compressive Strain
15
作者 吴瑜 孙明清 +2 位作者 ZHU Lutao SONG Qiulei CHEN Jianzhong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期968-978,共11页
The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequenc... The frequency-dependent electrical properties and strain self-sensing behaviour of ultra-high performance concrete(UHPC)as cement-based stress/strain self-sensing(CBSS)smart materials were investigated in the frequency range from 100 Hz to 300 kHz.By using the electrical parameters of the equivalent electric circuit model,the quantitative relations of capacitance and conductance of CBSS with the measurement frequency were derived.The capacitance and the conductance exhibit power-law type dependence on the measurement frequency.The calculated capacitance values at frequencies beyond 2 kHz and conductance values are consistent with the experimental results.The sweep-frequency test and the fixed-frequency test were performed to examine effects of the excitation frequencies on strain self-sensing properties of CBSS.The fractional change in capacitance(FCC)and resistance(FCR)of CBSS are frequency-dependent in the frequency range from 100 Hz to the f_(B),but frequency-independent in the frequency range from the f_(B)to 300 kHz.The f_(A)and the f_(B)are 1.7-4.0 kHz and 11-78 kHz depending on the fiber dosages,respectively.FCC and FCR reach their maximum at the f_(A)and 100 Hz,respectively.The responses of capacitance and resistance of CBSS to strain show good repeatability during cyclic loading.As the fiber dosage increases,capacitance-based sensitivity to strain increases initially and then decreases at the f_(A),and resistance-based sensitivity to strain of CBSS increases with increasing fiber contents. 展开更多
关键词 UHPC strain self-sensing capacitance-based frequency-dependent
下载PDF
Anisotropic metal–insulator transition in strained VO_(2)(B) single crystal
16
作者 马泽成 闫胜楠 +8 位作者 刘增霖 徐涛 陈繁强 陈思成 曹天俊 孙立涛 程斌 梁世军 缪峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期56-61,共6页
Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential ... Mechanical strain can induce noteworthy structural and electronic changes in vanadium dioxide, imparting substantial scientific importance to both the exploration of phase transitions and the development of potential technological applications. Unlike the traditional rutile(R) phase, bronze-phase vanadium dioxide [VO_(2)(B)] exhibits an in-plane anisotropic structure. When subjected to stretching along distinct crystallographic axes, VO_(2)(B) may further manifest the axial dependence in lattice–electron interactions, which is beneficial for gaining insights into the anisotropy of electronic transport.Here, we report an anisotropic room-temperature metal–insulator transition in single-crystal VO_(2)(B) by applying in-situ uniaxial tensile strain. This material exhibits significantly different electromechanical responses along two anisotropic axes.We reveal that such an anisotropic electromechanical response mainly arises from the preferential arrangement of a straininduced unidirectional stripe state in the conductive channel. This insulating stripe state could be attributed to the in-plane dimerization within the distorted zigzag chains of vanadium atoms, evidenced by strain-modulated Raman spectra. Our work may open up a promising avenue for exploiting the anisotropy of metal–insulator transition in vanadium dioxide for potential technological applications. 展开更多
关键词 vanadium dioxide strain ANISOTROPY electrical transport
下载PDF
Clinical Study of Shentong Zhuyu Decoction Combined with Massage Therapy in the Treatment of Exertional Chronic Lumbar Muscle Strain
17
作者 Lijun HAN Pengjun QIN +2 位作者 Junbao KE Qiang YAO Yongzhi LI 《Medicinal Plant》 2024年第2期65-68,共4页
[Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle st... [Objectives]To explore the effects of Shentong Zhuyu decoction combined with massage therapy in the treatment of exertional chronic lumbar muscle strain.[Methods]Sixty-four cases of exertional chronic lumbar muscle strain were randomly divided into two groups(32 cases each group).The patients in the control group only took celecoxib capsules,and those in the treatment group additionally took Shentong Zhuyu decoction combined with massage therapy.TCM syndrome score,lumbar function,hemorrheology index and clinical effect were compared between the two groups before and after treatment.[Results]After treatment,the TCM syndrome scores of lumbar distension/dull pain,tingling-like lumbago,adverse lateral turn,body weight loss,dark purple tongue,slow or astringent pulse,and Oswestry disability index(ODI)score in the treatment group were lower than those in the control group,and the levels of plasma viscosity,red blood cell aggregation index,platelet aggregation rate(PAG)and fibrinogen(Fib)were lower than those in the control group,showing statistical significance(P<0.05).The overall clinical effect distribution of the treatment group was better than that of the control group,and the difference was statistically significant(P<0.05).[Conclusions]Shentong Zhuyu decoction combined with massage therapy can effectively relieve the symptoms of patients with lumbago and improve the lumbar mobility function and hemorrheology,with obvious therapeutic effects in the treatment of exertional chronic lumbar muscle strain. 展开更多
关键词 Chronic lumbar muscle strain EXERTIONAL MASSAGE Shentong Zhuyu decoction
下载PDF
Band structures of strained kagome lattices
18
作者 徐露婷 杨帆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期456-463,共8页
Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices... Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain. 展开更多
关键词 kagome lattice strain band structure engineering
下载PDF
Realizing large strain at low electric field in Pb(Zr,Ti)O_(3)-based piezoelectric ceramics via engineering lattice distortion and domain structure
19
作者 Denghui Jiang Feng Luo +6 位作者 Kao Pei Hongyu Yang Linzhuang Xing Yangxi Yan Mo Zhao Zhimin Li Yue Hao 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第9期1409-1421,共13页
Pb(Zr,Ti)O_(3)-based ceramics are the mainstream materials for commercial multilayer piezoelectric ceramic actuators,but to date,large strains at low electric fields have not been well solved.Herein,0.95Pb(Zr_(0.56)Ti... Pb(Zr,Ti)O_(3)-based ceramics are the mainstream materials for commercial multilayer piezoelectric ceramic actuators,but to date,large strains at low electric fields have not been well solved.Herein,0.95Pb(Zr_(0.56)Ti_(0.44))O_(3)–0.05(Bi_(0.5)Na_(0.5))TiO_(3–x)BaZrO_(3)(PZT–BNT–xBZ)ceramics with efficient ferroelectric domain wall motion were designed and realized by reducing lattice distortion and changing the domain structure.It is found that the introduction of BaZrO_(3)(BZ)weakens the tetragonal phase distortion of PZT,contributing to a reduction in the mechanical stress that impedes the migration of domain walls.Moreover,the domain structures could be modified by adjusting the BZ content,where short and broad striped domains are constructed with high amplitude characteristics to enhance the domain wall motion.A large strain of 0.39%is accordingly achieved at an electric field as low as 40 kV/cm for the sample with x=0.03,accompanied by excellent temperature stability over the temperature range of 30–210℃.This study delves into the synergistic effects of reducing lattice distortion and changing domain structure on domain wall motion and provides an effective strategy to improve the strain of PZT-based piezoelectric ceramics. 展开更多
关键词 PZT ceramic strain ferroelectric domain lattice distortion
原文传递
Effect of Pre-strain on Microstructure and Stamping Performance of High-strength Low-alloy Steel
20
作者 刘坡 WEN Zhicheng +1 位作者 LIU Zheng 许峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期774-780,共7页
In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property ... In this study,pre-strain ranging from 0 to 0.12 was applied through uniaxial tension on high-strength low-alloy(HSLA)specimens with four kinds of grain size.Effect of pre-strain and grain size on me-chanical property was investigated through tensile tests.Microstructures of the pre-strained and tensile tested samples were analyzed,respectively.The 30.8°v-bending and following flattening,as well as Erichson cupping tests,were performed on the pre-strained samples.Results show the elongation ratio of grain and dislocation density increases with pre-strain.Yielding platform is removed when pre-strain is larger than 0.06 while yielding plateau period decreases with pre-strain less than 0.06 due to reduction of pinning effect.The 30.8°v-bending and the following flattening tests are successfully accomplished on all the pre-strained samples with different grain size.Decrease in grain size,along with increase in pre-strain,causes increase in strength and decrease in elongation rate as well as cupping value.Pre-strain causes very slight effect on bending ability,much less than that on mechanical property and cupping test value.Reciprocal impact of the pre-strain and grain size on HSLA steel deformability is inconspicuous. 展开更多
关键词 strain hardening DISLOCATION TEXTURE BENDING erichson cupping test
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部