A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo- ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Resp...A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo- ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur- face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium bypochlorite concentration (NaCIO), citric acid concentration and cleaning duration, The interactions between the factors were investigated with the numerical model. Humic acid (20 mg· L-1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim- ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%-0.3% 100-300 mg· L-1 1%-3% and 0.5-1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura- tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80% to 100K cleaning efficiency were observed with the R&M model after calibration.展开更多
Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and ...Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.展开更多
Based on the research on corrosion-resistance of titanium in various media and a great deal of tests, a newchemical cleaning process for titanium-made equipment was developed and applied to titanium-made heat exchange...Based on the research on corrosion-resistance of titanium in various media and a great deal of tests, a newchemical cleaning process for titanium-made equipment was developed and applied to titanium-made heat exchangersof a homemade multi-stage flash distiller for sea-water desalination in Tianjin Dagang Power Plant. Scale in the tubeswas removed completely as inspected by the experts. Testing results of hydrogen content and metallographic structureof titanium tubes showed that the cleaning was successful without any damages to the equipment.[展开更多
GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%)...GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.展开更多
This series of study focused on analysing and assessing the Changes of the physical and chemical characteristics of the stone surfaces during the sandblasting cleaning process by conducting various physical and chemic...This series of study focused on analysing and assessing the Changes of the physical and chemical characteristics of the stone surfaces during the sandblasting cleaning process by conducting various physical and chemical tests. Seven masonry stones and bricks were adopted, including yellow sandstone, red sandstone, limestone, marble, granite, white clay brick and yellow clay brick. The chemical investigations included the micrographing of the stone facade and the analysis of the chemical elements and compounds on four of the seven stones and bricks before and after the cleaning using the Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) techniques. In general, the chemical properties were found to vary largely during the building cleaning. The chemical tests showed that the chemical elements and compounds on the stone facade significantly varied after long term exposures to the atmosphere, mainly due to the soiling on the building fagade caused by environmental erosion and weathering.展开更多
First business: to clean a tea pot. Income: RMB 0.20 (less than 10 US cents at the time). Second business: to clean a boiler. Income: RMB 1, 200. Three months later, incomereached RMB 240, 000. Ten years later, the co...First business: to clean a tea pot. Income: RMB 0.20 (less than 10 US cents at the time). Second business: to clean a boiler. Income: RMB 1, 200. Three months later, incomereached RMB 240, 000. Ten years later, the company had 350 subsidiaries across China and four joint ventures abroad, with an annual output value of more than RMB 300 million. The data are simple but intriguing, recording the history of the Blue展开更多
Coal is fossil fuel abundant and widespread all over the world. It is a vital resource for energy security in our country, because the supply is stable. In this paper, the important role of coal played in the total pr...Coal is fossil fuel abundant and widespread all over the world. It is a vital resource for energy security in our country, because the supply is stable. In this paper, the important role of coal played in the total primary energy supply was described, and the status of modern coal chemical industry and clean coal technologies was analyzed. Based on the scientific research experiences of author, strategy and suggestion for Chinese development were proposed according to the regulation of scientific panning. In China, there are more social benefits and strategic meaning for developing the coal high-efficiency utilization technology. Considering of the general situation of our countries, these technologies with the features of can be industrialized, advanced, applicative, mature and feasible should be developed preferentially. The high-expend, low economic effectiveness and behindhand technologies should be abandoned. So, the development of coal clean technology in China should meet the natural resources, restrictive condition and elements of our countries industry situations. Based on these analysis, the most important technologies and fundamental researches should be prior developed in China.展开更多
Chemical Manganese Dioxide (CMD) was prepared by an alkali-oxidation method. There are several virtues to this environmental friendly and clean process, including the nontoxic and harmless reagents and products, eas...Chemical Manganese Dioxide (CMD) was prepared by an alkali-oxidation method. There are several virtues to this environmental friendly and clean process, including the nontoxic and harmless reagents and products, easy operations, no pollutants, easily obtained raw materials and moderate reaction conditions. The synthesized manganese dioxide was characterized by XRD and SEM. The particles were small, consisting primarily of α-MnO2 and γ-MnO2. Experimental results showed that the optimum conditions were: MnSOa.H20 to NaOH ratio, 1.0:2.4; catalyst concentration (catalyst TF-2), 6% of the MnSO4; initial solution pH, 11; reaction time and temperature, 20 min and 80 ℃; air flow, 0.20 m3/h; and, agitation rate, 700 r/rain. The conversion of MnSO4 can exceed 80% under these optimum conditions.展开更多
Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sic...Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market p...Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.展开更多
Due to its extensive use in shale gas exploration and development,oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process.The large amount of oil-bearing drill cuttin...Due to its extensive use in shale gas exploration and development,oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process.The large amount of oil-bearing drill cuttings generated during the drilling process can lead to serious secondary contamination.In this study,a wetting agent FSC-6 with good hydrophobic and oleophobic properties was synthesized to construct an efficient oil removal system.For the first time,the mechanism of this system was analyzed by using the theory of adhesion function,interfacial tension and wettability.At the same time,a combined acoustic-chemical treatment process was applied to the wastewater and slag generated after the cleaning of the oil-bearing drill cuttings.The experimental results show that the application of this pollution-free technology can effectively solve the environmental pollution and resource recovery problems of oil-bearing drill cuttings.It meets the standard of drilling chips with oil content less than 2%in SY/T7422-2018“Oil-based drilling fluid drilling chips treatment system for oil and gas drilling equipment”.展开更多
Cleaning of hollow-fibre polyvinyl chloride (PVC) membrane with different chemical reagents after ultrafiltration of algal-rich water was investigated. Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO...Cleaning of hollow-fibre polyvinyl chloride (PVC) membrane with different chemical reagents after ultrafiltration of algal-rich water was investigated. Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO), 100 mg/L NaClO exhibited the best performance (88.4% ± 1.1%) in removing the irreversible fouling resistance. This might be attributed to the fact that NaClO could eliminate almost all the major foulants such as carbohydrate-like and protein-like materials on the membrane surface, as confirmed by Fourier transform infrared spectroscopy analysis. However, negligible irreversible resistance (1.5% ± 1.0%) was obtained when the membrane was cleaning by 500 mg/L NaOH for 1.0 hr, although the NaOH solution could also desorb a portion of the major foulants from the fouled PVC membrane. Scanning electronic microscopy and atomic force microscopy analyses demonstrated that 500 mg/L NaOH could change the structure of the residual foulants on the membrane, making them more tightly attached to the membrane surface. This phenomenon might be responsible for the negligible membrane permeability restoration after NaOH cleaning. On the other hand, the microscopic analyses reflected that NaClO could effectively remove the foulants accumulated on the membrane surface.展开更多
It is important to develop the advanced coal to chemicals industry(ACCI)against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental constraints in China.In this s...It is important to develop the advanced coal to chemicals industry(ACCI)against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental constraints in China.In this study,the technology and industry of China’s ACCI are reviewed to explain the effect of using coal to replace oil and natural gas,and the corresponding resource and environmental burdens that this will create.Development trends in technology and industry are also proposed to explore future scenarios.The review shows that although excellent progress has been made on an industrial scale,demonstrative level,and in terms of technology and equipment,the lack of strategic understanding,severe external constraints,partly underdeveloped technologies,and weak foundations must be immediately addressed.Therefore,it is necessary to clarify the importance that the ACCI has on the energy revolution and energy system.Based on technological innovation,a variety of external factors should be considered as a whole with emphasis on filling the knowledge gap of theoretical foundations and industry standards to support high-quality development for ACCI.展开更多
Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydis...Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydisulfate(heat/PDS)process to clean the membrane fouling derived from humic acid(HA).The results show that the combination of heat and PDS can achieve almost 100%recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50℃ for 2 h,which is attributed to the changes of HA structure and enhanced detachment of foulants from membranes.The properties of different treated membranes are characterized by scanning electron microscopy(SEM),atomic force microscope(AFM),attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-ray photoelectron spectroscopy(XPS),demonstrating that the reversible and irreversible foulants could be effectively removed by heat/PDS cleaning.The filtration process and fouling mechanism of the cleaned membrane were close to that of the virgin membrane,illustrating the good reusability of the cleaned membrane.Additionally,heat/PDS which can avoid the generation of halogenated byproducts shows comparable performance to Na Cl O on membrane cleaning and high performance for the removal of fouling caused by sodium alginate(SA),HA-bovine serum albumin(BSA)-SA mixture and algae,further suggesting that heat/PDS would be a potential alternative for membrane cleaning in practical application.展开更多
Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bot...Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bottom surface of graphene is also inevitable;therefore, cleaning the bottom surface is crucial. In this study, we proposed an improved graphene wet transfer method using an ultrasonic processing(UP) step for etching copper(Cu). Using this method, the bottom surface can be cleaned efficiently. The results of atomic force microscopy(AFM)and Raman spectroscopy mapping revealed that the graphene films transferred with UP had smoother and cleaner surfaces, less contamination, and higher quality than those transferred without UP.展开更多
基金Supported by State Key Laboratory of Urban Water Resource and Environment(2016DX01)the Fundamental Research Funds for the Central University(NSRIF.2014096)Science and Technology Planning Project of Chancheng District(2013A1044)
文摘A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo- ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur- face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium bypochlorite concentration (NaCIO), citric acid concentration and cleaning duration, The interactions between the factors were investigated with the numerical model. Humic acid (20 mg· L-1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim- ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%-0.3% 100-300 mg· L-1 1%-3% and 0.5-1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura- tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80% to 100K cleaning efficiency were observed with the R&M model after calibration.
基金financially supported by the National Natural Science Foundation of China(21921006).
文摘Severe fouling to poly(vinylidene fluoride)(PVDF)membrane is usually caused as filtrating the papermaking wastewater in the ultrafiltration(UF)process.In the paper,fouling behavior and mechanism were investigated,and the low-concentration polyvinyl alcohol(PVA)contained in the sedimentation tank wastewater was found as the main foulant.Consequently,the corresponding cleaning approach was proposed.The experiment and modeling results elaborated that the fouling mode developed from pore blockage to cake layer along with filtration time.Chemical cleaning conditions including the composition and concentration of reagents,cleaning duration and trans-membrane pressure were investigated for their effect on cleaning efficiency.Pure water flux was recovered by over 95% after cleaning the PVDF membrane using the optimal conditions 0.5 wt% NaClO(as oxidant)and 0.1 wt% sodiumdodecyl benzene sulfonate(SDBS,as surfactant)at 0.04MPa for 100 min.In the chemical cleaning method,hypochlorite(ClO−)could first chain-scissor PVA macromolecules to small molecules and SDBS could wrap the fragments in micelles,so that the foulants were removed from the pores and surface of membrane.After eight cycling tests,pure water flux recovery maintained above 95% and the reused membrane was found intact without defects.
文摘Based on the research on corrosion-resistance of titanium in various media and a great deal of tests, a newchemical cleaning process for titanium-made equipment was developed and applied to titanium-made heat exchangersof a homemade multi-stage flash distiller for sea-water desalination in Tianjin Dagang Power Plant. Scale in the tubeswas removed completely as inspected by the experts. Testing results of hydrogen content and metallographic structureof titanium tubes showed that the cleaning was successful without any damages to the equipment.[
基金Projects supported by the National Natural Science Foundation of China (Grant No. 60871012)the National Key Laboratory of Science and Technology Foundation on Low Light Level Night Vision (Grant No. J20110104)the Research and Innovation Plan for Graduate Students of Jiangsu Higher Education Institutions (Grant No. CXZZ11 0238)
文摘GaN samples 1-3 are cleaned by a 2:2:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%) to de-ionized water;hydrochloric acid(37%);or a 4:1 solution of sulfuric acid(98%) to hydrogen peroxide(30%).The samples are activated by Cs/O after the same annealing process.X-ray photoelectron spectroscopy after the different ways of wet chemical cleaning shows:sample 1 has the largest proportion of Ga,N,and O among the three samples,while its C content is the lowest.After activation the quantum efficiency curves show sample 1 has the best photocathode performance.We think the wet chemical cleaning method is a process which will mainly remove C contamination.
文摘This series of study focused on analysing and assessing the Changes of the physical and chemical characteristics of the stone surfaces during the sandblasting cleaning process by conducting various physical and chemical tests. Seven masonry stones and bricks were adopted, including yellow sandstone, red sandstone, limestone, marble, granite, white clay brick and yellow clay brick. The chemical investigations included the micrographing of the stone facade and the analysis of the chemical elements and compounds on four of the seven stones and bricks before and after the cleaning using the Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) techniques. In general, the chemical properties were found to vary largely during the building cleaning. The chemical tests showed that the chemical elements and compounds on the stone facade significantly varied after long term exposures to the atmosphere, mainly due to the soiling on the building fagade caused by environmental erosion and weathering.
文摘First business: to clean a tea pot. Income: RMB 0.20 (less than 10 US cents at the time). Second business: to clean a boiler. Income: RMB 1, 200. Three months later, incomereached RMB 240, 000. Ten years later, the company had 350 subsidiaries across China and four joint ventures abroad, with an annual output value of more than RMB 300 million. The data are simple but intriguing, recording the history of the Blue
文摘Coal is fossil fuel abundant and widespread all over the world. It is a vital resource for energy security in our country, because the supply is stable. In this paper, the important role of coal played in the total primary energy supply was described, and the status of modern coal chemical industry and clean coal technologies was analyzed. Based on the scientific research experiences of author, strategy and suggestion for Chinese development were proposed according to the regulation of scientific panning. In China, there are more social benefits and strategic meaning for developing the coal high-efficiency utilization technology. Considering of the general situation of our countries, these technologies with the features of can be industrialized, advanced, applicative, mature and feasible should be developed preferentially. The high-expend, low economic effectiveness and behindhand technologies should be abandoned. So, the development of coal clean technology in China should meet the natural resources, restrictive condition and elements of our countries industry situations. Based on these analysis, the most important technologies and fundamental researches should be prior developed in China.
基金National Natural Science Foundation of China (No50704036)the Natural Science Foundation of Hunan Province (No08JJ3027) for their financial support
文摘Chemical Manganese Dioxide (CMD) was prepared by an alkali-oxidation method. There are several virtues to this environmental friendly and clean process, including the nontoxic and harmless reagents and products, easy operations, no pollutants, easily obtained raw materials and moderate reaction conditions. The synthesized manganese dioxide was characterized by XRD and SEM. The particles were small, consisting primarily of α-MnO2 and γ-MnO2. Experimental results showed that the optimum conditions were: MnSOa.H20 to NaOH ratio, 1.0:2.4; catalyst concentration (catalyst TF-2), 6% of the MnSO4; initial solution pH, 11; reaction time and temperature, 20 min and 80 ℃; air flow, 0.20 m3/h; and, agitation rate, 700 r/rain. The conversion of MnSO4 can exceed 80% under these optimum conditions.
基金funded by National Key Research, Development Program of China (No. 2017YFE0301305KYWX-002)Sichuan Science and Technology Program (No. 2021YFSY0015)
文摘Atmospheric pressure plasma jet(APPJ)was used to clean nitrogen-containing carbon films(C–N)fabricated by plasma-assisted chemical vapor deposition method employing the plasma surface interaction linear device at Sichuan University(SCU-PSI).The properties of the contaminated films on the surface of pristine and He-plasma pre-irradiated tungsten matrix,such as morphology,crystalline structure,element composition and chemical structure were characterized by scanning electron microscopy,grazing incidence x-ray diffraction and x-ray photoelectron spectroscopy.The experimental results revealed that the removal of C–N film with a thickness of tens of microns can be realized through APPJ cleaning regardless of the morphology of the substrates.Similar removal rates of 16.82 and 13.78μm min^(-1)were obtained for C–N films deposited on a smooth pristine W surface and rough fuzz-covered W surface,respectively.This is a remarkable improvement in comparison to the traditional cleaning method.However,slight surface oxidation was found after APPJ cleaning,but the degree of oxidation was acceptable with an oxidation depth increase of only 3.15 nm.Optical emission spectroscopy analysis and mass spectrometry analysis showed that C–N contamination was mainly removed through chemical reaction with reactive oxygen species during APPJ treatment using air as the working gas.These results make APPJ cleaning a potentially effective method for the rapid removal of C–N films from the wall surfaces of fusion devices.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
文摘Coal is still a major source of energy, also a major source of SO_2, NOx and CO_2 emission though. Removal of SO_2 and NOx doubled the cost of power generation, and capture of CO_2 is equivalent to double the market price of power coal. The GCP (green coal power) is the power generated in coal-combustion with zero emission. The author indicates that it is possible to make coal-fired power plants emission free based on thermodynamic analysis and purposely designed experiments using SFG (simulated flue gases). It is concluded in the study that all SO_2 and NOx in the post-combustion flue gas are reduced to inoffensive substances at temperature lower than 750 ℃ when contacting carbon and elemental sulfur is separated in succeeded cooling of flue gas at temperatures 200-400 ℃, and the ultrafine dusts are trapped in condensed water at temperature blow 100 ℃. Based on chemical engineering expertise the author is sure that the cost for removing acid gases is much lower than any clean coal technologies known to today. Instead of capture, the remained CO_2 is converted to CO in the second time contact with carbon at 900-950 ℃. CO is the raw material of chemical synthesis and, thus, CO_2 is stored in chemical products such as methanol, fertilizer, plastics, etc. The simple and low-cost processing allows GCP utilized in practice easily.
文摘Due to its extensive use in shale gas exploration and development,oil-based drilling fluids generate large amounts of oil-bearing drill cuttings during the drilling process.The large amount of oil-bearing drill cuttings generated during the drilling process can lead to serious secondary contamination.In this study,a wetting agent FSC-6 with good hydrophobic and oleophobic properties was synthesized to construct an efficient oil removal system.For the first time,the mechanism of this system was analyzed by using the theory of adhesion function,interfacial tension and wettability.At the same time,a combined acoustic-chemical treatment process was applied to the wastewater and slag generated after the cleaning of the oil-bearing drill cuttings.The experimental results show that the application of this pollution-free technology can effectively solve the environmental pollution and resource recovery problems of oil-bearing drill cuttings.It meets the standard of drilling chips with oil content less than 2%in SY/T7422-2018“Oil-based drilling fluid drilling chips treatment system for oil and gas drilling equipment”.
基金supported by the Important Special Program of Science and Technology for the Control and Treatment of Water Pollution in China(No.2008ZX07422-005)the National Science and Technology Project of Eleventh Five Years(No.2006BAJ08B05-2)+2 种基金the National Creative Research Groups Foundation of China(No.50821002)the State Key Laboratory of Urban Water Resource and Environment(No.2008DX04)the National Postdoctoral Science Foundation of China(No.20100471062)
文摘Cleaning of hollow-fibre polyvinyl chloride (PVC) membrane with different chemical reagents after ultrafiltration of algal-rich water was investigated. Among the tested cleaning reagents (NaOH, HCl, EDTA, and NaClO), 100 mg/L NaClO exhibited the best performance (88.4% ± 1.1%) in removing the irreversible fouling resistance. This might be attributed to the fact that NaClO could eliminate almost all the major foulants such as carbohydrate-like and protein-like materials on the membrane surface, as confirmed by Fourier transform infrared spectroscopy analysis. However, negligible irreversible resistance (1.5% ± 1.0%) was obtained when the membrane was cleaning by 500 mg/L NaOH for 1.0 hr, although the NaOH solution could also desorb a portion of the major foulants from the fouled PVC membrane. Scanning electronic microscopy and atomic force microscopy analyses demonstrated that 500 mg/L NaOH could change the structure of the residual foulants on the membrane, making them more tightly attached to the membrane surface. This phenomenon might be responsible for the negligible membrane permeability restoration after NaOH cleaning. On the other hand, the microscopic analyses reflected that NaClO could effectively remove the foulants accumulated on the membrane surface.
基金supported by the Foundation of the Chinese Academy of Engineering,China(CKCEST-2021-1-15 and 2020NXZD3)。
文摘It is important to develop the advanced coal to chemicals industry(ACCI)against a backdrop of coal-based energy structures,excessive imported oil and natural gas,and strict environmental constraints in China.In this study,the technology and industry of China’s ACCI are reviewed to explain the effect of using coal to replace oil and natural gas,and the corresponding resource and environmental burdens that this will create.Development trends in technology and industry are also proposed to explore future scenarios.The review shows that although excellent progress has been made on an industrial scale,demonstrative level,and in terms of technology and equipment,the lack of strategic understanding,severe external constraints,partly underdeveloped technologies,and weak foundations must be immediately addressed.Therefore,it is necessary to clarify the importance that the ACCI has on the energy revolution and energy system.Based on technological innovation,a variety of external factors should be considered as a whole with emphasis on filling the knowledge gap of theoretical foundations and industry standards to support high-quality development for ACCI.
基金supported by the Natural Science Foundation of China(Nos.52070081,51578258 and 51878308)the National Key Research and Development Program of China(No.2022YFC3203500)。
文摘Na Cl O has been widely used to restore membrane flux in practical membrane cleaning processes,which would induce the formation of toxic halogenated byproducts.In this study,we proposed a novel heatactivated peroxydisulfate(heat/PDS)process to clean the membrane fouling derived from humic acid(HA).The results show that the combination of heat and PDS can achieve almost 100%recovery of permeate flux after soaking the HA-fouled membrane in 1 mmol/L PDS solution at 50℃ for 2 h,which is attributed to the changes of HA structure and enhanced detachment of foulants from membranes.The properties of different treated membranes are characterized by scanning electron microscopy(SEM),atomic force microscope(AFM),attenuated total reflection Fourier transform infrared spectroscopy(ATRFTIR),and X-ray photoelectron spectroscopy(XPS),demonstrating that the reversible and irreversible foulants could be effectively removed by heat/PDS cleaning.The filtration process and fouling mechanism of the cleaned membrane were close to that of the virgin membrane,illustrating the good reusability of the cleaned membrane.Additionally,heat/PDS which can avoid the generation of halogenated byproducts shows comparable performance to Na Cl O on membrane cleaning and high performance for the removal of fouling caused by sodium alginate(SA),HA-bovine serum albumin(BSA)-SA mixture and algae,further suggesting that heat/PDS would be a potential alternative for membrane cleaning in practical application.
基金supported by the National Key Research and Development Program of China under Grants No.2017YFA0701000and No.2020YFA0714001the National Natural Science Foundation of China under Grants No.61988102,No.61921002,and No.62071108the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2020J003 and No.ZYGX2020ZB007。
文摘Clean graphene transfer has received widespread research attention, where most methods are focused on cleaning the upper surface of graphene to improve the transfer technique. However, the residue formation on the bottom surface of graphene is also inevitable;therefore, cleaning the bottom surface is crucial. In this study, we proposed an improved graphene wet transfer method using an ultrasonic processing(UP) step for etching copper(Cu). Using this method, the bottom surface can be cleaned efficiently. The results of atomic force microscopy(AFM)and Raman spectroscopy mapping revealed that the graphene films transferred with UP had smoother and cleaner surfaces, less contamination, and higher quality than those transferred without UP.