The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ...The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.展开更多
Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures ca...Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures can co-intercalate into graphite interlayers with flexibly controllable ratios and contents.Among these co-intercalation compounds,Fe/Ni-intercalated graphite with a predesigned mole ratio of 1:3 transforms into NiFe_(2)O_(4)/FeNi_(3)@EG during the annealing process.The synthesized magnetic EG hybrids present multiband microwave absorption in C and X bands due to improved impedance match as well as significantly enhanced interfacial polarization relaxation induced by multi-componential metals.The reflection values of−39.1 dB at 6.95 GHz and−25.7 dB at 9.4 GHz are achieved with an ultra-low loading of 5 wt.%.This work provides a flexible approach for tuning the components and structures of magnetic EG hybrids,which may contribute to the development of microwave absorption materials with superior performances.展开更多
An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from ...An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs.展开更多
Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discusse...Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.展开更多
Some vinyl polymers/montmorillonite nanocomposites were prepared via in-situ-atom transfer radical polymerization (ATRP) in presence of clay. Methyl methacrylate, styrene and n-butyl methacrylate were involved in the ...Some vinyl polymers/montmorillonite nanocomposites were prepared via in-situ-atom transfer radical polymerization (ATRP) in presence of clay. Methyl methacrylate, styrene and n-butyl methacrylate were involved in the formation of such polymeric nanocomposites. Their dielectric properties were extensively studied to invest them in the a.c. power applications. Several dielectric parameters such as dielectric constant loss (ε") and a.c. conductivity (σ) were measured at both different frequencies (0.1 Hz to 100 KHz) and temperature ranged from (20℃ to 90℃). From the dielectric results, it was realized that the dielectric a.c. conductivity was enhanced by increasing the temperature for the four prepared polymer nanocomposites.展开更多
The inte rmixed phase is important in effective charge separation due to the formation of cascaded energy landscape between intermixed phase and pure phases in polymer/fullerene solar cells.However,the quantitative re...The inte rmixed phase is important in effective charge separation due to the formation of cascaded energy landscape between intermixed phase and pure phases in polymer/fullerene solar cells.However,the quantitative relationship between the charge separation and the content of intermixed phase has not been investigated clearly so far.Here,we proposed to tune the content of the polymer/PC71BM intermixed phase by cha nging the polymer solution conformatio n.Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene](PBTTT)and PC71 BM was selected as a model system.The organization of the PBTTT in solution promotes the formation of ordered aggregates as aging time increases,the interdigitation of side-chains restricts the intercalation of PC71 BM.Therefore,the intermixed phase formed by intercalation PC71 BM to PBTTT side chain can be controlled.When the aging time increasing from 0 to 80 min,the extent of inte rcalation gradually from almost complete intercalated phase to almost non-intercalated.As the content of intercalated phase is about 11%,the charge dissociation is most efficie nt and short circuit current(Jsc)increased from 1.60 mA/cm2 to 4.94 mA/cm2,leading to optimized device performance.展开更多
基金the support of the National Natural Science Foundation of China(Nos.51803177,51973191,51533008,and 51636002)National Key R&D Program of China(No.2016YFA0200200)+5 种基金the China Postdoctoral Science Foundation(No.2021M690134)Hundred Talents Program of Zhejiang University(188020*194231701/113)Key Research and Development Plan of Zhejiang Province(2018C01049)the National Postdoctoral Program for Innovative Talents(No.BX201700209)the Fundamental Research Funds for the Central Universities(2021FZZX001-17),the Natural Science Foundation of Jiangsu Province(BK20210353)the Fundamental Research Funds for the Central Universities(No.30920041106).
文摘The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
基金the financial support of the National Natural Science Foundation of China(No.51573149)the Key R&D Projects in Sichuan Province(Nos.2020ZDZX0005 and 2020ZDZX0008).
文摘Magnetic expanded graphite(EG)hybrids were synthesized by co-intercalation polymerization of aniline together with transition metal ions.Experimental results show that metal ions(Fe,Co,Ni,Cu)and even their mixtures can co-intercalate into graphite interlayers with flexibly controllable ratios and contents.Among these co-intercalation compounds,Fe/Ni-intercalated graphite with a predesigned mole ratio of 1:3 transforms into NiFe_(2)O_(4)/FeNi_(3)@EG during the annealing process.The synthesized magnetic EG hybrids present multiband microwave absorption in C and X bands due to improved impedance match as well as significantly enhanced interfacial polarization relaxation induced by multi-componential metals.The reflection values of−39.1 dB at 6.95 GHz and−25.7 dB at 9.4 GHz are achieved with an ultra-low loading of 5 wt.%.This work provides a flexible approach for tuning the components and structures of magnetic EG hybrids,which may contribute to the development of microwave absorption materials with superior performances.
基金support from Batteries Sweden(Grant No.Vinnova-2019-00064)the Stand-Up for Energy consortium,the ISCF Faraday Challenge for the project on“Degradation of Battery Materials”(Grant No.EP/S003053/1,FIRG024)the ERC(Grant No.771777 FUN POLYSTORE).
文摘An electrolyte destined for use in a dual-ion battery(DIB)must be stable at the inherently high potential required for anion intercalation in the graphite electrode,while also protecting the Al current collector from anodic dissolution.A higher salt concentration is needed in the electrolyte,in comparison to typical battery electrolytes,to maximize energy density,while ensuring acceptable ionic conductivity and operational safety.In recent years,studies have demonstrated that highly concentrated organic electrolytes,ionic liquids,gel polymer electrolytes(GPEs),ionogels,and water-in-salt electrolytes can potentially be used in DIBs.GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency,energy density,and long-term cycle life of DIBs.Furthermore,GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance.In this review,we highlight the latest advances in the application of different electrolytes in DIBs,with particular emphasis on GPEs.
基金Supported by Phosphor Plan of Science Technology of Young Scientists of Shanghai(No.00QE14047).
文摘Six preparation methods for polymeric organic-inorganic nanocomposites and their respective mechanisms and features are reviewed. The extraordinary properties of polymeric organic-inorganic nanocomposites are discussed,and their potential applications are evaluated.
文摘Some vinyl polymers/montmorillonite nanocomposites were prepared via in-situ-atom transfer radical polymerization (ATRP) in presence of clay. Methyl methacrylate, styrene and n-butyl methacrylate were involved in the formation of such polymeric nanocomposites. Their dielectric properties were extensively studied to invest them in the a.c. power applications. Several dielectric parameters such as dielectric constant loss (ε") and a.c. conductivity (σ) were measured at both different frequencies (0.1 Hz to 100 KHz) and temperature ranged from (20℃ to 90℃). From the dielectric results, it was realized that the dielectric a.c. conductivity was enhanced by increasing the temperature for the four prepared polymer nanocomposites.
基金partly supported by the National Natural Science Foundation of China(Nos. 5189071, 91833306, 51303177)the Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDB12020300)
文摘The inte rmixed phase is important in effective charge separation due to the formation of cascaded energy landscape between intermixed phase and pure phases in polymer/fullerene solar cells.However,the quantitative relationship between the charge separation and the content of intermixed phase has not been investigated clearly so far.Here,we proposed to tune the content of the polymer/PC71BM intermixed phase by cha nging the polymer solution conformatio n.Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene](PBTTT)and PC71 BM was selected as a model system.The organization of the PBTTT in solution promotes the formation of ordered aggregates as aging time increases,the interdigitation of side-chains restricts the intercalation of PC71 BM.Therefore,the intermixed phase formed by intercalation PC71 BM to PBTTT side chain can be controlled.When the aging time increasing from 0 to 80 min,the extent of inte rcalation gradually from almost complete intercalated phase to almost non-intercalated.As the content of intercalated phase is about 11%,the charge dissociation is most efficie nt and short circuit current(Jsc)increased from 1.60 mA/cm2 to 4.94 mA/cm2,leading to optimized device performance.