Compared with the laboratory acoustic measurement of sediment samples, the in-situ acoustic measurement in marine sediment is considered more accurate and rehable, because it covers all of the surrounding environment ...Compared with the laboratory acoustic measurement of sediment samples, the in-situ acoustic measurement in marine sediment is considered more accurate and rehable, because it covers all of the surrounding environment factors and avoids the disturbance during the course of sampling and transporting of sediment samples. A new multi-frequency in-situ geoacoustic measurement system (MFIS^AMS) has been developed. The system can provide acoustic vdocity (compressional wave) and attenuation profiles of the uppermost 4 - 8 m sediment in the seafloor. It consists of 8 channels with 12 frequencies (multi-frequencies) and 0.5 - 2 MHz sampling rates. The data collected can be transmiuted in real-time. Associated with inclinometer and altimeter, it can provide the data for depth emendation. Acoustic velocity and attenuation data have been obtained from two in-situ experiments conducted in the Hangzhou Bay.展开更多
A new in-situ seabed acoustic measurement system is developed for direct in-situ measurement of sediment geoacoustic properties (compressional wave velocity and attenuation). The new in-situ system consists of two p...A new in-situ seabed acoustic measurement system is developed for direct in-situ measurement of sediment geoacoustic properties (compressional wave velocity and attenuation). The new in-situ system consists of two parts: the deck control unit and the underwater measurement unit. The underwater measurement unit emits sonic waves that propagate through the seafloor sediment, receives the returning signals, and transmits them to the deck control unit for waveform display and analysis. The entire operation is controlled and monitored in real time by the deck control unit on the research vessel and can provide recording of full waveforms to determine the sound velocity and attenuation. This paper outlines the design of the system, the measurement process, and demonstrates its application in tests carded out on seabed sediment off the Qingdao coast, China. The test results show that the system performed well and rapidly provided accurate in-situ acoustic velocity and attenuation estimates of the seafloor sediment.展开更多
The key to the Problems of probing the concentration of suspended sediment in water and its variationwith acoustic equiprnent is for to calibrate the Obboned data. Carbining the acoustic bebotter intensity data witht...The key to the Problems of probing the concentration of suspended sediment in water and its variationwith acoustic equiprnent is for to calibrate the Obboned data. Carbining the acoustic bebotter intensity data withthe real concentration of suspended sediment from water Samples collected for the Changjiang Estuary, three in-situcalibration metyods for transfrming transforming measured sediment are induced. Results show that the discrepancies for cali- brated values given by characteristic the calibration and real ones are less than the values given by single shot method,and the statistted are is 20% approximately. The calibration on charactedstic times is praCtical and sabler than simultaneous calibration.展开更多
In-situ layerwise imaging measurement of laser powder bed fusion(LPBF)provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity.Using high-resolution camera...In-situ layerwise imaging measurement of laser powder bed fusion(LPBF)provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity.Using high-resolution camera layerwise imaging and image processing algorithms to monitor fusion area and powder bed geometric defects has been studied by many researchers,which successfully monitored the contours of components and evaluated their accuracy.However,research for the methods of in-situ 3D contour measurement or component edge warping identification is rare.In this study,a 3D contour mea-surement method combining gray intensity and phase difference is proposed,and its accuracy is verified by designed experiments.The results show that the high-precision of the 3D contours can be achieved by the constructed energy minimization function.This method can detect the deviations of common ge-ometric features as well as warpage at LPBF component edges,and provides fundamental data for in-situ quality monitoring tools.展开更多
In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or ...In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.展开更多
Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoi...Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoir core samples to investigate true underground conditions. Due to the diversity of the fracture parameters, the simulation and evaluation of fractured rock in the laboratory setting is also difficult. Previous researchers have typically used a single material, such as resin, to simulate fractures. There has been a great deal of simplifying of the materials and conditions, which has led to disappointing results in application. In the present study, sandstone core samples were selected and sectioned to simulate fractures, and the changes of the compressional and shear waves were measured with the gradual increasing of the fracture width. The effects of the simulated fracture width on the acoustic wave velocity and amplitude were analyzed. Two variables were defined: H represents the amplitude attenuation ratio of the compressional and shear wave, and x represents the transit time difference value of the shear wave and compressional wave divided by the transit time of the compressional wave. The effect of fracture width on these two physical quantities was then analyzed. Finally, the methods of quantitative evaluation for fracture width with H and x were obtained. The experimental results showed that the rock fractures linearly reduced the velocity of the shear and compressional waves. The effect of twin fractures on thecompressional velocity was almost equal to that of a single fracture which had the same fracture width as the sum of the twin fractures. At the same time, the existence of fractures led to acoustic wave amplitude attenuations, and the compressional wave attenuation was two times greater than that of the shear wave. In this paper, a method was proposed to calculate the fracture width with x and H, then this was applied to the array acoustic imaging logging data.The application examples showed that the calculated fracture width could be compared with fractures on the electric imaging logs. These rules were applied in the well logs to effectively evaluate the fractures, under the case of no image logs, which had significance to prospecting and development of oil and gas in fractured reservoirs.展开更多
A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in exist...A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in existence. By using a hydraulic driving device, the system drives four acoustic probes into sediments at an even speed, and this decreases disturbances to sediments introduced by the penetration of acoustic probes. By means of the special design of the central control unit, the system can work full-automatically and the data are stored self-containedly, and this avoids the requirement of real-time remote controlling from the ship. Its operating water depth, measuring depth and measuring frequency is 500m, 1.0m and 30kHz respectively. A set of in situ sound speeds and attenuation coefficients of sediments are obtained at 40 stations using the system. The results confirm that the data obtained by the in situ sediment acoustic system are accurate and credible.展开更多
A measuring principle for acoustic power in plastics ultrasonic welding process is introduced in this paper. Signal detection circuits of current, voltage, frequency, power for ultrasonic transducer of plastic ultraso...A measuring principle for acoustic power in plastics ultrasonic welding process is introduced in this paper. Signal detection circuits of current, voltage, frequency, power for ultrasonic transducer of plastic ultrasonic welder are developed. A computer controlled measuring system is designed to sample the signals of welding process parameters. By using the designed system, the acoustic power curve during welding is calculated, saved, and displayed. And the relation between fusion state of plastics workpieces and input energy of joint is analyzed.展开更多
In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic...In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed.展开更多
In both fixed and rotary wing aircraft, the move toward lighter structures has resulted in an increase in structural vibration and interior noise. Porous materials have been proposed as acoustic absorbers to reduce th...In both fixed and rotary wing aircraft, the move toward lighter structures has resulted in an increase in structural vibration and interior noise. Porous materials have been proposed as acoustic absorbers to reduce this noise. This paper discusses the development of equipment at the NASA Glenn Research Center for characterizing the acoustic performance of porous materials: a flow resistance apparatus to measure the pressure drop across a specimen of porous material, and a standing wave tube that uses a pair of stationary microphones to measure the normal incidence acoustic impedance of a porous material specimen. Specific attention is paid to making this equipment as flexible as possible in terms of specimen sizes need for testing to accommodate the small or irregular sizes often produced during the development phase of a new material. In addition, due to the unknown performance of newly developed material, safety features are included on the flow resistance apparatus to contain test specimens that shed particles or catastrophically fail during testing. Results of measurements on aircraft fiberglass are presented to verify the correct performance of the equipment.展开更多
In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an ...In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an obstacle. To measure the vibration without disturbing flow, the Michelson interferometer was employed. The flow channel, which had an obstacle wall inside of it, was fabricated such that it morphologically mimicked the simplified geometry of the oral cavity. Given airflows at a flow rate of 7.5 × 10–4 m3/s from the inlet, aeroacoustic sounds were generated. A spectrum analy-sis of the data demonstrated two prominent peaks in the sound at 1,300 and 3,500 Hz and one peak in the wall vibration at 3,500 Hz. The correlation in peak frequencies between the sound and wall vibration suggests that the sound at 3,500 Hz was induced by the wall vibration. In fact, the sound amplitude at 3,500 Hz decreased when the obstacle wall was thickened, which increased its rigidity (p < 0.05, t-test). The experimental results demonstrate that the developed techniques are capable of measuring aeroacoustic sound and obstacle wall vibration simultaneously, and suggest the potential to pave the way for detailed analysis of the production of sibilant sounds /s/.展开更多
This paper carries out tbe experirnent study on the correlation between am stress-strain process of rock samples and the acoustie parameter change of rock by using the measurement system of KS acoustic wave data proce...This paper carries out tbe experirnent study on the correlation between am stress-strain process of rock samples and the acoustie parameter change of rock by using the measurement system of KS acoustic wave data processing device. On the spot, the stability of surrounding rock is studied by means of experiments on the relationship between the change process (from elastie to plastic failure zone) in surrounding rock of roadway and the change law of acoustic parameters of rock. These acoustie parameters inelude wave amplitude, spectral amplitude, spectrum area, spectral density,wave veloeity and attenuation coefficient etc.展开更多
The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM...The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.展开更多
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a ...Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.展开更多
In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced....In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.展开更多
In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in ...In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.展开更多
The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement f...The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.展开更多
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The...With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.展开更多
Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress ...Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Pro-gram, Grant No.2005AA615040)the National Natural Science Foundation of China(Grant No.40776038)+2 种基金Open Fund of Key Laboratory of Geo-detection(China University of Geosciences,Beijing),Ministry of Education (GrantNo. GDL0802)the Ocean Public Welfare Scientific Research Special Appropriation Project(Grant Nos.200805079and 200805005)the Open Fund of Key Laboratory of Submarine Geoscience,State Oceanic Administration(Grant No. KCSG0803)
文摘Compared with the laboratory acoustic measurement of sediment samples, the in-situ acoustic measurement in marine sediment is considered more accurate and rehable, because it covers all of the surrounding environment factors and avoids the disturbance during the course of sampling and transporting of sediment samples. A new multi-frequency in-situ geoacoustic measurement system (MFIS^AMS) has been developed. The system can provide acoustic vdocity (compressional wave) and attenuation profiles of the uppermost 4 - 8 m sediment in the seafloor. It consists of 8 channels with 12 frequencies (multi-frequencies) and 0.5 - 2 MHz sampling rates. The data collected can be transmiuted in real-time. Associated with inclinometer and altimeter, it can provide the data for depth emendation. Acoustic velocity and attenuation data have been obtained from two in-situ experiments conducted in the Hangzhou Bay.
基金Supported by the National Special Research Fund for Non-Profit Marine Sector(No.200905025)
文摘A new in-situ seabed acoustic measurement system is developed for direct in-situ measurement of sediment geoacoustic properties (compressional wave velocity and attenuation). The new in-situ system consists of two parts: the deck control unit and the underwater measurement unit. The underwater measurement unit emits sonic waves that propagate through the seafloor sediment, receives the returning signals, and transmits them to the deck control unit for waveform display and analysis. The entire operation is controlled and monitored in real time by the deck control unit on the research vessel and can provide recording of full waveforms to determine the sound velocity and attenuation. This paper outlines the design of the system, the measurement process, and demonstrates its application in tests carded out on seabed sediment off the Qingdao coast, China. The test results show that the system performed well and rapidly provided accurate in-situ acoustic velocity and attenuation estimates of the seafloor sediment.
文摘The key to the Problems of probing the concentration of suspended sediment in water and its variationwith acoustic equiprnent is for to calibrate the Obboned data. Carbining the acoustic bebotter intensity data withthe real concentration of suspended sediment from water Samples collected for the Changjiang Estuary, three in-situcalibration metyods for transfrming transforming measured sediment are induced. Results show that the discrepancies for cali- brated values given by characteristic the calibration and real ones are less than the values given by single shot method,and the statistted are is 20% approximately. The calibration on charactedstic times is praCtical and sabler than simultaneous calibration.
基金This work was supported by the foundation of Key Research and Development Program of Hubei Province(2020BAB137)Shen-zhen Fundamental Research Program(JCYJ20210324142007022).
文摘In-situ layerwise imaging measurement of laser powder bed fusion(LPBF)provides a wealth of forming and defect data which enables monitoring of components quality and powder bed homogeneity.Using high-resolution camera layerwise imaging and image processing algorithms to monitor fusion area and powder bed geometric defects has been studied by many researchers,which successfully monitored the contours of components and evaluated their accuracy.However,research for the methods of in-situ 3D contour measurement or component edge warping identification is rare.In this study,a 3D contour mea-surement method combining gray intensity and phase difference is proposed,and its accuracy is verified by designed experiments.The results show that the high-precision of the 3D contours can be achieved by the constructed energy minimization function.This method can detect the deviations of common ge-ometric features as well as warpage at LPBF component edges,and provides fundamental data for in-situ quality monitoring tools.
基金National Natural Science Foundation of China(Nos.61871353,62031005)。
文摘In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.
基金supported in part by the National Natural Science Foundation of China (Grant No. 41174096)the Graduate Innovation Fund of Jilin University (Project No. 2016103)
文摘Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoir core samples to investigate true underground conditions. Due to the diversity of the fracture parameters, the simulation and evaluation of fractured rock in the laboratory setting is also difficult. Previous researchers have typically used a single material, such as resin, to simulate fractures. There has been a great deal of simplifying of the materials and conditions, which has led to disappointing results in application. In the present study, sandstone core samples were selected and sectioned to simulate fractures, and the changes of the compressional and shear waves were measured with the gradual increasing of the fracture width. The effects of the simulated fracture width on the acoustic wave velocity and amplitude were analyzed. Two variables were defined: H represents the amplitude attenuation ratio of the compressional and shear wave, and x represents the transit time difference value of the shear wave and compressional wave divided by the transit time of the compressional wave. The effect of fracture width on these two physical quantities was then analyzed. Finally, the methods of quantitative evaluation for fracture width with H and x were obtained. The experimental results showed that the rock fractures linearly reduced the velocity of the shear and compressional waves. The effect of twin fractures on thecompressional velocity was almost equal to that of a single fracture which had the same fracture width as the sum of the twin fractures. At the same time, the existence of fractures led to acoustic wave amplitude attenuations, and the compressional wave attenuation was two times greater than that of the shear wave. In this paper, a method was proposed to calculate the fracture width with x and H, then this was applied to the array acoustic imaging logging data.The application examples showed that the calculated fracture width could be compared with fractures on the electric imaging logs. These rules were applied in the well logs to effectively evaluate the fractures, under the case of no image logs, which had significance to prospecting and development of oil and gas in fractured reservoirs.
文摘A novel self-contained in situ sediment acoustic measurement system based on hydraulic driving penetration is proposed to solve the problem of large disturbances to sediments of the in situ equipments already in existence. By using a hydraulic driving device, the system drives four acoustic probes into sediments at an even speed, and this decreases disturbances to sediments introduced by the penetration of acoustic probes. By means of the special design of the central control unit, the system can work full-automatically and the data are stored self-containedly, and this avoids the requirement of real-time remote controlling from the ship. Its operating water depth, measuring depth and measuring frequency is 500m, 1.0m and 30kHz respectively. A set of in situ sound speeds and attenuation coefficients of sediments are obtained at 40 stations using the system. The results confirm that the data obtained by the in situ sediment acoustic system are accurate and credible.
文摘A measuring principle for acoustic power in plastics ultrasonic welding process is introduced in this paper. Signal detection circuits of current, voltage, frequency, power for ultrasonic transducer of plastic ultrasonic welder are developed. A computer controlled measuring system is designed to sample the signals of welding process parameters. By using the designed system, the acoustic power curve during welding is calculated, saved, and displayed. And the relation between fusion state of plastics workpieces and input energy of joint is analyzed.
基金the financial support provided by the National Natural Science Foundation of China(Grant Nos.42174133 and 41676032)China Geological Survey(Grant No.DD20190234)。
文摘In recent years, natural gas hydrate has attracted increasing attention worldwide as a potential alternative energy source due to its attributes of wide distribution, large reserves, and low carbon. Since the acoustic characteristics of hydratebearing reservoirs clearly differ from those of adjacent formations, an acoustic approach, using seismic and acoustic logging, is one of the most direct, effective and widely used methods among the identification and characterization techniques for hydrate reservoir exploration. This review of research on the influence of hydrate(content and distribution) on the acoustic properties(velocity and attenuation) of sediments in the past two decades includes experimental studies based on different hydrate formation methods and measurements, as well as rock physics models. The main problems in current research are also pointed out and future prospects discussed.
文摘In both fixed and rotary wing aircraft, the move toward lighter structures has resulted in an increase in structural vibration and interior noise. Porous materials have been proposed as acoustic absorbers to reduce this noise. This paper discusses the development of equipment at the NASA Glenn Research Center for characterizing the acoustic performance of porous materials: a flow resistance apparatus to measure the pressure drop across a specimen of porous material, and a standing wave tube that uses a pair of stationary microphones to measure the normal incidence acoustic impedance of a porous material specimen. Specific attention is paid to making this equipment as flexible as possible in terms of specimen sizes need for testing to accommodate the small or irregular sizes often produced during the development phase of a new material. In addition, due to the unknown performance of newly developed material, safety features are included on the flow resistance apparatus to contain test specimens that shed particles or catastrophically fail during testing. Results of measurements on aircraft fiberglass are presented to verify the correct performance of the equipment.
文摘In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an obstacle. To measure the vibration without disturbing flow, the Michelson interferometer was employed. The flow channel, which had an obstacle wall inside of it, was fabricated such that it morphologically mimicked the simplified geometry of the oral cavity. Given airflows at a flow rate of 7.5 × 10–4 m3/s from the inlet, aeroacoustic sounds were generated. A spectrum analy-sis of the data demonstrated two prominent peaks in the sound at 1,300 and 3,500 Hz and one peak in the wall vibration at 3,500 Hz. The correlation in peak frequencies between the sound and wall vibration suggests that the sound at 3,500 Hz was induced by the wall vibration. In fact, the sound amplitude at 3,500 Hz decreased when the obstacle wall was thickened, which increased its rigidity (p < 0.05, t-test). The experimental results demonstrate that the developed techniques are capable of measuring aeroacoustic sound and obstacle wall vibration simultaneously, and suggest the potential to pave the way for detailed analysis of the production of sibilant sounds /s/.
文摘This paper carries out tbe experirnent study on the correlation between am stress-strain process of rock samples and the acoustie parameter change of rock by using the measurement system of KS acoustic wave data processing device. On the spot, the stability of surrounding rock is studied by means of experiments on the relationship between the change process (from elastie to plastic failure zone) in surrounding rock of roadway and the change law of acoustic parameters of rock. These acoustie parameters inelude wave amplitude, spectral amplitude, spectrum area, spectral density,wave veloeity and attenuation coefficient etc.
文摘The in-situ instrumentation technique for measuring mercury and itsspeciation downstream a utility 100 MW pulverized coal (PC) fired boiler system was developed andconducted by the use of the Ontario hydro method (OHM) consistent with American standard test methodtogether with the semi-continuous emissions monitoring (SCEM) system as well as a mobile laboratoryfor mercury monitoring. The mercury and its speciation concentrations including participate mercuryat three locations of before air preheater, before electrostatic precipitator (ESP) and after ESPwere measured using the OHM and SCEM methods under normal operation conditions of the boiler systemas a result of firing a bituminous coal. The vapor-phase total mercury Hg(VT) concentration declinedwith the decrease of flue gas temperature because of mercury species transformation from oxidizedmercury to particulate mercury as the flue gas moved downstream from the air preheater to the ESPand after the ESP. A good agreement for Hg°, Hg^(2+) and Hg( VT) was obtained between the twomethods in the ash-free area. But in the dense particle-laden flue gas area, there appeared to be abig bias for mercury speciation owing to dust cake formed in the filter of OHM sampling probe. Theparticulateaffinity to the flue gas mercury and the impacts of sampling condition to accuracy ofmeasure were discussed.
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.
文摘In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.
基金supported by the National Natural Science Foundation of China (No. 50490271)
文摘In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.
基金Supported by the National Nature Science Foundation of China(No.41527901)the Provincial Key Research and Development Program of Shandong,China(No.2019JZZY010417)the Special Program of Shandong Province for Qingdao Pilot National Laboratory of Marine Science and Technology(No.2021QNLM020002).
文摘The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.
基金founded by Project of National Natural Science Foundation of China “Study on the Anelastic Strain Recovery Compliance in the In-situ Stress Measurement by ASR Method”, No 41404080the Project of Geological Survey “Survey on the In-situ Stress Field in Southern China”
文摘With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples.
文摘Reliable information of in--situ stress state is necessary for the design andconstruction of most important rock projects. As most rock projects are getting deeper and deeper,traditional techniques of in--situ stress measurement are not very suitable. The current techniquesof in--situ stress measurement and their insufficiency for use at great depth are analyzed. Somebasic ideas of the development of new techniques and the improvement of current techniques for useat great depth are provided.