Aim To improve the dissolution rate and bioavailability of silybin. Methods Sustained-release silybin microspheres were prepared by the spherical crystallization technique with soliddispersing and release-retarding po...Aim To improve the dissolution rate and bioavailability of silybin. Methods Sustained-release silybin microspheres were prepared by the spherical crystallization technique with soliddispersing and release-retarding polymers. A differential scanning calorimeter and an X-ray diffractometer were used to investigate the dispersion state of silybin in the microspheres. The shape, surface morphology, and internal structure of the microspheres were observed using a scanning electron microscope. Characterization of the microspheres, such as average diameter, size distribution and bulk density of the microspheres was investigated. Results The particle size of the microspheres was determined mainly by the agitation speed. The dissolution rate of silybin from microspheres was enhanced by increasing the amount of the dispersing agents, and sustained by the retarding agents. The release rate of microspheres was controlled by adjusting the combination ratio of the dispersing agents to the retarding agents. The resuits of X-ray diffraction and differential scanning calorimetry analysis indicated that silybin was highly dispersed in the microspheres in amorphous state. The release profiles and content did not change after a three-month accelerated stability test at 40 ℃ and 75% relative humidity. Conclusion Sustained-release silybin microspheres with a solid dispersion structure were prepared successfully in one step by a spherical crystallization technique combined with solid dispersion technique. The preparation process is simple, reproducible and inexpensive. The method is efficient for designing sustained-release microspheres with water-insoluble drugs.展开更多
Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membra...Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.展开更多
Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeabil...Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeability,which will lead to the distortion of the petroleum resources reserves assessment.Therefore,the hollow glass microspheres/epoxy resin(HGM/EP)composites were innovatively proposed as temperature preserved materials for in-situ temperature-preserved coring(ITP-Coring),and the physical,mechanical,and temperature preserved properties were evaluated.The results indicated that:As the HGM content increased,the density and mechanical properties of the composites gradually decreased,while the water absorption was deficient without hydrostatic pressure.For composites with 50 vol%HGM,when the hydrostatic pressure reached 60 MPa,the water absorption was above 30.19%,and the physical and mechanical properties of composites were weakened.When the hydrostatic pressure was lower than 40 MPa,the mechanical properties and thermal conductivity of composites were almost unchanged.Therefore,the composites with 50 vol%HGM can be used for ITPCoring operations in deep environments with the highest hydrostatic pressure of 40 MPa.Finally,to further understand the temperature preserved performance of composites in practical applications,the temperature preserved properties were measured.An unsteady-state heat transfer model was established based on the test results,then the theoretical change of the core temperature during the coring process was obtained.The above tests results can provide a research basis for deep rock in-situ temperature preserved corer and support accurate assessment of deep petroleum reserves.展开更多
The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of interme...The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.展开更多
Improved controllability and energy density of ignition agents are of great significance for the devel-opment of energetic composite materials.In this study,droplet microfluidics and emulsification tech-niques were co...Improved controllability and energy density of ignition agents are of great significance for the devel-opment of energetic composite materials.In this study,droplet microfluidics and emulsification tech-niques were combined to prepare HNS/CL-20 composite microspheres with polyglycidyl azide polymer(GAP)as the binder.The influence of binder content on the morphology of microspheres was investi-gated,and the microspheres were characterized and tested for particle size,crystal structure,thermal decomposition,dispersibility,mechanical sensitivity,combustion behavior and detonation performance.The results showed that microspheres prepared with a binder content of 3%had higher sphericity and particle size uniformity.The microspheres retained the crystal structure of both HNS and CL-20(ε-type).Compared with raw HNS,the microspheres had higher apparent activation energy,better safety per-formance,and good dispersibility.The ignition experiments and detonation performance tests show that HNS/CL-20 composite microspheres have excellent ignition performance,obvious combustion flame,and significant energy release effects,which are expected to achieve high energy and high-speed response of the igniter,thus improving the ignition reliability in special environments or systems.展开更多
A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of ...A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of a single loss tangent(tanS) peak measured by means of dynamic mechanical analysis(DMA) proves the miscibility between PA6 and NSAP in the blends. It was found that there existed drastic changes in the crystallographic form and crystallization kinetics for the in-situ blends, e.g. , when 20% NSAP was added, nearly all crystallites existed in the ,y form and the crystallization could hardly occur upon cooling even at a rate of 2.5 ℃/min. Moreover, cold crystallization appears during the subsequent heating, and its melting point is 40 ℃ lower than that of the virgin system. On the other hand, the size of the spherulites only decreases modestly. It is suggested that the introduction of irregular stiff segments originated from NSAP into PA6 macromolecule chain, which resulted from transamidation during the polymerization play a dominant role in the drastic change of crystallization kinetics and the resultant morphology of the in-situ blends.展开更多
The MoS2 microspheres with high specific surface area assembled by ultrathin nanosheets have been successfully synthesized by a facile and environmentally friendly reaction in a closed reactor at moderate temperatures...The MoS2 microspheres with high specific surface area assembled by ultrathin nanosheets have been successfully synthesized by a facile and environmentally friendly reaction in a closed reactor at moderate temperatures.The solid-state assembly was realized by a simple calcination process,and the annealing temperature played a key role in the formation of the final microspheres.The influences of reaction temperature were carefully investigated.A possible formation mechanism about the solid-state assembly was proposed based on the experimental results.展开更多
Using the langasite crystal microbalance (LCM), the trends in film thickness produced by means of the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas and their mixed gas were observed at 600?...Using the langasite crystal microbalance (LCM), the trends in film thickness produced by means of the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas and their mixed gas were observed at 600?C and evaluated by comparison with the information from a transmission electron microscope (TEM). The crystalline silicon film thickness from trichlorosilane gas was comparable to that of an amorphous silicon carbide film from monomethylsilane gas. The film obtained from the gas mixture was amorphous and was the thinnest in this study. Because the thickness trend obtained by the LCM agreed with that by the TEM, the LCM is shown to be a convenient evaluation tool for the behavior of various film deposition.展开更多
Crystallization behavior and kinetics study of palm kernel oil (PKO) were investigated using differential scanning calorimetry (DSC) by controlling cooling and reheating rate within a certain range of temperature. The...Crystallization behavior and kinetics study of palm kernel oil (PKO) were investigated using differential scanning calorimetry (DSC) by controlling cooling and reheating rate within a certain range of temperature. The evolution of morphology and particle counts was analyzed by focused beam reflectance measurement (FBRM) and particles video microscope (PVM) at the nucleation stage during suspension crystallization. The particle counts and morphological evolution from needle-like aggregations to amorphous form from PVM were observed during the initial crystallization stage, which meant that a phase transition was likely to occur. This work can give a better understanding of complicated fat system crystallization behavior and provide some critical instructions to control fractionation process.展开更多
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc...Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.展开更多
The growth mechanism of reinforcement in in situ synthesized (TiB+TiC)/Ti composites was investigated. The results show that reinforcements nucleate and grow in a way of dissolution precipitation. The morphologies of ...The growth mechanism of reinforcement in in situ synthesized (TiB+TiC)/Ti composites was investigated. The results show that reinforcements nucleate and grow in a way of dissolution precipitation. The morphologies of reinforcements are closely related to the solidification paths and crystal structure of reinforcements. TiB, as a reinforcement, is liable to grow along [010] direction and forms in short fibre shape due to its B27 structure, whereas primary TiC is liable to form composition undercooling and grow in dendritic shape. TiC phases precipitated in binary eutectic and ternary eutectic reactions grow in equiaxial shape. The addition of aluminum element refines TiB and TiC particles, and makes TiC reinforcements grow into the equiaxial particles easily. The addition of graphite adjusts the solidification paths and forms more TiC with dendritic shape. [展开更多
A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic...A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic property (film-forming ability) of PS spheres was improved by a thermo-rheology treatment before LB assembly, and a large film was obtained. In contrast to the traditional LB technique, no surfactant was needed in this method, which could eliminate the additional contamination of surfactants in the preparation process and provided the products with versa- tile applications in nanosphere lithography (NSL) for biosensor, surface plasmon resonance, and surface enhanced Raman spectroscopy .展开更多
In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr allo...In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.展开更多
文摘Aim To improve the dissolution rate and bioavailability of silybin. Methods Sustained-release silybin microspheres were prepared by the spherical crystallization technique with soliddispersing and release-retarding polymers. A differential scanning calorimeter and an X-ray diffractometer were used to investigate the dispersion state of silybin in the microspheres. The shape, surface morphology, and internal structure of the microspheres were observed using a scanning electron microscope. Characterization of the microspheres, such as average diameter, size distribution and bulk density of the microspheres was investigated. Results The particle size of the microspheres was determined mainly by the agitation speed. The dissolution rate of silybin from microspheres was enhanced by increasing the amount of the dispersing agents, and sustained by the retarding agents. The release rate of microspheres was controlled by adjusting the combination ratio of the dispersing agents to the retarding agents. The resuits of X-ray diffraction and differential scanning calorimetry analysis indicated that silybin was highly dispersed in the microspheres in amorphous state. The release profiles and content did not change after a three-month accelerated stability test at 40 ℃ and 75% relative humidity. Conclusion Sustained-release silybin microspheres with a solid dispersion structure were prepared successfully in one step by a spherical crystallization technique combined with solid dispersion technique. The preparation process is simple, reproducible and inexpensive. The method is efficient for designing sustained-release microspheres with water-insoluble drugs.
基金supported by the National Natural Science Foundation of China (21978253)the Fundamental Research Funds for the Central Universities (226-2022-00020, 226-2022-00055)。
文摘Compared to inorganic supports, polymeric supports can offer additional benefits, e.g., easier processing and cheaper. However, the organic surface has weak adhesion to the zeolitic imidazolate frameworks(ZIFs) membrane layer, which usually requires complex surface modification or seeding. Herein, we demonstrate that a dual-layer asymmetric polymer support prepared by a simple spinning process is a good candidate for the preparation of ZIF-8 membrane. The inner layer of the support is an organic hollow fiber(PES) with finger-like pores, and the outer layer is a ZnO-PES composite layer with finger-like pores also. The ZnO-PES composite layer is expected to contain uniform ZnO crystals in the polymer matrix, i.e., the ZnO particles in the skin layer of the support are not easy to fall off. Under the induction of ZnO particles in the outer layers, continuous ZIF-8 membranes can be prepared by single in-situ crystallization, showing good adhesion to the supports. The obtained ZIF-8 membranes show a H_(2) permeance of 8.7 × 10^(-8)mol·m^(-2)·s^(-1)·Pa^(-1) with a H_(2)/N_(2) ideal separation selectivity of 18.0. The design and preparation of this dual-layer polymer support is expected to promote the large-scale application of MOF membranes on polymer supports.
基金National Natural Science Foundation of China(grant number 51827901)funded by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)Shenzhen Basic Research Program(General Program)(No.JCYJ20190808153416970)
文摘Deep petroleum resources are in a high-temperature environment.However,the traditional deep rock coring method has no temperature preserved measures and ignores the effect of temperature on rock porosity and permeability,which will lead to the distortion of the petroleum resources reserves assessment.Therefore,the hollow glass microspheres/epoxy resin(HGM/EP)composites were innovatively proposed as temperature preserved materials for in-situ temperature-preserved coring(ITP-Coring),and the physical,mechanical,and temperature preserved properties were evaluated.The results indicated that:As the HGM content increased,the density and mechanical properties of the composites gradually decreased,while the water absorption was deficient without hydrostatic pressure.For composites with 50 vol%HGM,when the hydrostatic pressure reached 60 MPa,the water absorption was above 30.19%,and the physical and mechanical properties of composites were weakened.When the hydrostatic pressure was lower than 40 MPa,the mechanical properties and thermal conductivity of composites were almost unchanged.Therefore,the composites with 50 vol%HGM can be used for ITPCoring operations in deep environments with the highest hydrostatic pressure of 40 MPa.Finally,to further understand the temperature preserved performance of composites in practical applications,the temperature preserved properties were measured.An unsteady-state heat transfer model was established based on the test results,then the theoretical change of the core temperature during the coring process was obtained.The above tests results can provide a research basis for deep rock in-situ temperature preserved corer and support accurate assessment of deep petroleum reserves.
基金Funded by the National Natural Science Foundation of China(No.52103285)the 111 National Project(No.B20002)。
文摘The nucleation and growth mechanism of nanoparticles is an important theory,which can guide the preparation of nanomaterials.However,it is still lacking in direct observation on the details of the evolution of intermediate state structure during nucleation and growth.In this work,the evolution process of bismuth nanoparticles induced by electron beam was revealed by in-situ transmission electron microscopy(TEM)at atomic scale.The experimental results demonstrate that the size,stable surface and crystallographic defect have important influences on the growth of Bi nanoparticles.Two non-classical growth paths including single crystal growth and polycrystalline combined growth,as well as,corresponding layer-by-layer growth mechanism along{012}stable crystal plane of Bi nanoparticles with dodecahedron structure were revealed by in-situ TEM directly.These results provide important guidance and a new approach for in-depth understanding of the nucleation and growth kinetics of nanoparticles.
基金supported by National Natural Science Foundation of China(grant No.22005275).
文摘Improved controllability and energy density of ignition agents are of great significance for the devel-opment of energetic composite materials.In this study,droplet microfluidics and emulsification tech-niques were combined to prepare HNS/CL-20 composite microspheres with polyglycidyl azide polymer(GAP)as the binder.The influence of binder content on the morphology of microspheres was investi-gated,and the microspheres were characterized and tested for particle size,crystal structure,thermal decomposition,dispersibility,mechanical sensitivity,combustion behavior and detonation performance.The results showed that microspheres prepared with a binder content of 3%had higher sphericity and particle size uniformity.The microspheres retained the crystal structure of both HNS and CL-20(ε-type).Compared with raw HNS,the microspheres had higher apparent activation energy,better safety per-formance,and good dispersibility.The ignition experiments and detonation performance tests show that HNS/CL-20 composite microspheres have excellent ignition performance,obvious combustion flame,and significant energy release effects,which are expected to achieve high energy and high-speed response of the igniter,thus improving the ignition reliability in special environments or systems.
基金Supported by the National Natural Science Foundation of China(No50373037)
文摘A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of a single loss tangent(tanS) peak measured by means of dynamic mechanical analysis(DMA) proves the miscibility between PA6 and NSAP in the blends. It was found that there existed drastic changes in the crystallographic form and crystallization kinetics for the in-situ blends, e.g. , when 20% NSAP was added, nearly all crystallites existed in the ,y form and the crystallization could hardly occur upon cooling even at a rate of 2.5 ℃/min. Moreover, cold crystallization appears during the subsequent heating, and its melting point is 40 ℃ lower than that of the virgin system. On the other hand, the size of the spherulites only decreases modestly. It is suggested that the introduction of irregular stiff segments originated from NSAP into PA6 macromolecule chain, which resulted from transamidation during the polymerization play a dominant role in the drastic change of crystallization kinetics and the resultant morphology of the in-situ blends.
基金Funded by the National Natural Science Foundation of China(Nos.51275213,51302112)the Jiangsu Colleges and Universities Nature Science Foundation(No.14KJB430009)+1 种基金the Jiangsu Industry-University-Research Joint Innovation Foundation(Nos.BY213065-05,Y213065-06)Jiangsu Graduate Student Innovation Project(No.CXZZ13_0669)
文摘The MoS2 microspheres with high specific surface area assembled by ultrathin nanosheets have been successfully synthesized by a facile and environmentally friendly reaction in a closed reactor at moderate temperatures.The solid-state assembly was realized by a simple calcination process,and the annealing temperature played a key role in the formation of the final microspheres.The influences of reaction temperature were carefully investigated.A possible formation mechanism about the solid-state assembly was proposed based on the experimental results.
文摘Using the langasite crystal microbalance (LCM), the trends in film thickness produced by means of the chemical vapor deposition using trichlorosilane gas, monomethylsilane gas and their mixed gas were observed at 600?C and evaluated by comparison with the information from a transmission electron microscope (TEM). The crystalline silicon film thickness from trichlorosilane gas was comparable to that of an amorphous silicon carbide film from monomethylsilane gas. The film obtained from the gas mixture was amorphous and was the thinnest in this study. Because the thickness trend obtained by the LCM agreed with that by the TEM, the LCM is shown to be a convenient evaluation tool for the behavior of various film deposition.
文摘Crystallization behavior and kinetics study of palm kernel oil (PKO) were investigated using differential scanning calorimetry (DSC) by controlling cooling and reheating rate within a certain range of temperature. The evolution of morphology and particle counts was analyzed by focused beam reflectance measurement (FBRM) and particles video microscope (PVM) at the nucleation stage during suspension crystallization. The particle counts and morphological evolution from needle-like aggregations to amorphous form from PVM were observed during the initial crystallization stage, which meant that a phase transition was likely to occur. This work can give a better understanding of complicated fat system crystallization behavior and provide some critical instructions to control fractionation process.
文摘Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip.
文摘The growth mechanism of reinforcement in in situ synthesized (TiB+TiC)/Ti composites was investigated. The results show that reinforcements nucleate and grow in a way of dissolution precipitation. The morphologies of reinforcements are closely related to the solidification paths and crystal structure of reinforcements. TiB, as a reinforcement, is liable to grow along [010] direction and forms in short fibre shape due to its B27 structure, whereas primary TiC is liable to form composition undercooling and grow in dendritic shape. TiC phases precipitated in binary eutectic and ternary eutectic reactions grow in equiaxial shape. The addition of aluminum element refines TiB and TiC particles, and makes TiC reinforcements grow into the equiaxial particles easily. The addition of graphite adjusts the solidification paths and forms more TiC with dendritic shape. [
基金Supported by the National Natural Science Foundation of China(Nos.20473029and20573041)Program for Changjiang Scholars and Innovative Research Team in the University of China(No.IRT0422)+3 种基金Program for New Century Excellent Talents in theUniversity of ChinaScientific Research Foundation for the Returned Overseas Chinese Scholars Initiated State Education Ministry of Chinathe 111 Project of China(No.B06009).
文摘A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic property (film-forming ability) of PS spheres was improved by a thermo-rheology treatment before LB assembly, and a large film was obtained. In contrast to the traditional LB technique, no surfactant was needed in this method, which could eliminate the additional contamination of surfactants in the preparation process and provided the products with versa- tile applications in nanosphere lithography (NSL) for biosensor, surface plasmon resonance, and surface enhanced Raman spectroscopy .
文摘In-situ observations on α/γ phase transformation were made to study the effects of grain boundary microstructures on the formation of a new phase and the migration of α/γ interphase boundary in an iron4. 2%Cr alloy. It was found that triple junctions with more random boundaries could be the primary nucleation sites for a new phase, while triple junctions with low angle or low ∑ coincidence boundaries did not play any role as preferential sites. The migration of α/γ interphase boundary during heating over the transformation temperature range showed the two stage behaviour characterized by a stage with a migration velocity of 0. 33-0. 75 mm/s and secondly by a stage with 3. 7-7. 6 mm/s. It was also found that abnormal grain growth and a high density of ∑3 coincidence boundaries could occur in a phase with bcc structure after cycling of α/γ phase transformation. A new mechanism of nucleation and growth of a new phase in α/γ phase transformation is proposed on the basis of roles of plane-matching interphase boundaries, as previously discussed on the origin of anisotropy of grain growth due to the migration of {110} plane-matching boundaries in Fe-3z%Si alloy. The most recent theoretical work on the distribution of plane-matching boundaries in solids with different crystal structures was found to be useful for the understanding of nucleation and growth during α/γ phase transformation.