Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri...Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.展开更多
Amorphous solid dispersion(ASD)is one of the most effective approaches for delivering poorly soluble drugs.In ASDs,polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level.To p...Amorphous solid dispersion(ASD)is one of the most effective approaches for delivering poorly soluble drugs.In ASDs,polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level.To prepare the solid dispersions,there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations.Polymer selection is of great importance because it influences the stability,solubility and dissolution rates,manufacturing process,and bioavailability of the ASD.This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers,formulation designs and preparation methods.Furthermore,considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.展开更多
Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of...Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g^-1 to 3.74 dL·g^-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fluid behavior.展开更多
Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic resul...Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic results demonstrated the formation of PAM. POM and TEM observations revealed that PAM particles had a regular shape and good dispersity. A thick layer of surfactant (PVP) still existed on PAM particles after multiple centrifugation and ultrasonic re-dispersion in ethanol, which indicates a strong interaction between PVP and PAM. The effects of various polymerization factors on the average size of PAM particles have also been studied.展开更多
Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with ol...Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP) and 2,2’-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of-1μm with superparamagnetic characteristics. The saturation magnetization was found to be 4.5emu.g-1. There was abundance of epoxy groups with density of 0.028 mmol·g^-1 in microspheres. The magnetic PGMA microspheres have extensive potential uses in magnetic bioseparation and biotechnology.展开更多
Dispersion copolymerization of styrene with polyethylene glycol 200-dimethacrylae as the cross-linking agent was completed by using poly(N-vinyl pyrrolidone) and 2,2-azo-bisisobutyronitrile as the steric stabilizer ...Dispersion copolymerization of styrene with polyethylene glycol 200-dimethacrylae as the cross-linking agent was completed by using poly(N-vinyl pyrrolidone) and 2,2-azo-bisisobutyronitrile as the steric stabilizer and initiator, respectively. Crosslinked copolymeric microspheres were prepared directly by the one-step method of dispersion copolymerization. The effects of the content of polyethylene glycol 200-dimethacrylae on the particle morphology and the copolymerization rate were investigated. It shows that the crosslinking agent plays an important role in the particle morphology and the system stability. When the content of crosslinking reached 2.5wt%, the floriated particles were obtained.展开更多
Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic s...Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.展开更多
Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly(...Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly( styrener-acrylonitrile)-b- poly ( 1, 1, 2, 2-tetrahydroperfluorooctyl methacrylate) (PSAN-b-PFOMA), as steric stabilizers. The structure and the particle morphology of the product were characterised by FT-IR and SEM. In addition, the effects of the stabilizer on the surface properties of the products were investigated in detail. Results indicate that the surface free energy of the poly (AN-r-VAc) (PAVAc) film decreases dramatically because of the existence of the stabilizer. And, when the initial concentration of the monomer was 10% (the mass (g) of monomer to the volume (mL) of ScCO2 ) the optimal concentration of the stabilizer is about 5% (w/w% to monomers).展开更多
Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obt...Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obtained by different reaction conditions.Some parameters such as ethanol, PEG and monomer which affect particle size diameter and size distribution are discussed briefly in this paper.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
To improve the corneal permeability and water-solubility of disulfiram(DSF), which is an ocular drug for cataract, P188 was selected as a matrix to prepare solid dispersion of DSF(DSF SD) by hot melt method. The DSF S...To improve the corneal permeability and water-solubility of disulfiram(DSF), which is an ocular drug for cataract, P188 was selected as a matrix to prepare solid dispersion of DSF(DSF SD) by hot melt method. The DSF SD was characterized by DSC, XRD, and IR, and the results suggested that DSF was amorphous in DSF SD. The DSF SD was added to borate buffer solution(BBS) contained 20% poloxamer P407 and 1.2% poloxamer P188 to form in-situ gel. In vitro and in vivo experiments revealed that DSF SD combined with in-situ gel(DSF SD/in-situ gel) increased the residence time and the amount of DSF penetrated through the corneal. The pharmacodynamics studies exhibited DSF SD/in-situ gel delayed the development of selenium-induced cataract at some content. These results investigated that DSF SD/in-situ gel as a drug delivery system can improve DSF ocular permeability.展开更多
The effects of SN5040 and polyethylene glycol(PEG) individually and in combination on the dispersion stability of nano-TiO2 aqueous suspension were investigated by ultraviolet-visible absorption spectroscopy. The ad...The effects of SN5040 and polyethylene glycol(PEG) individually and in combination on the dispersion stability of nano-TiO2 aqueous suspension were investigated by ultraviolet-visible absorption spectroscopy. The adsorption mechanism of these dispersants was detected by zeta potential, isothermal absorption and FTIR analysis. It is found that SN5040 is superior for stabilizing nano-TiO2 in aqueous suspension to PEG in basic region, and the optimum mass fraction of SN5040 addition is 3%. In the case of NaCl addition, the optimum value increases with .the increase of NaCl concentration in the solution. When the mixture of SN5040 and PEG is employed, the antagonism appears preponderant. When SN5040 and PEG are added sequentially, the synergistic reaction takes place. The synergistic reaction can be attributed to the mechanism that PEG adsorption decreases the electronic repulsion between SN5040 molecules, which results in the increase of SN5040 adsorption density. PEG is adsorbed by the interaction with the pre-adsorbed SN5040 layer. Furthermore, the modified inner wall latex paint with well dispersed nano-YiO2 suspension is endowed with excellent ultraviolet absorption and antibacterial properties.展开更多
The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it...The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it is useful for vomiting and unconscious patients. It can avoid first pass metabolism by the liver. It is non-invasive way and self-administered system compared to injections. The film forming polymeric solutions are a novel transdermal drug delivery system. This system consists of an active drug, film forming polymer, plasticizer.展开更多
A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug,...A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug, polymer-drug composites in the form of nanoparticles were prepared and characterized. The surface morphologies, the physical status of the drug, and the drug-polymer interactions were studied using FESEM, DSC, XRD, and ATR-FTIR. FESEM observations demonstrated that the nanoparticles gradually decreased in size from 640 ± 350, to 530 ± 320, 460 ± 200 and 320 ± 160 nm as the KET content increased from 0, to 9.1%, 16.7% and 33.3% w/w, respectively. Results from DSC and XRD suggested that KET was distributed in the PVP matrix in an amorphous manner at the molecular level. This is thought to be due to their compatibility, arising through hydrogen bonding as demonstrated by ATR- FTIR spectra. In vitro dissolution tests showed that the nanoparticles released the incorporated KET within 1 min, evidencing markedly improved dissolution over pure KET and a KET-PVP physical mixture. Electrospraying can hence offer a facile route to develop new polymer composites for biomedical applications, in particular for improving dissolution rate of poorly water-soluble drugs.展开更多
A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilizati...A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.展开更多
Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT was...Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).展开更多
Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylaceta...Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylacetamide(DMAc). Atomic force microscopy (AFM) was employed to observe the microstructure of the composite film. The thermal property was investigated by TGA and mechanical property was characterized by DXLL-1000 electromechanical material testing machine. The results showed that the breaking strength of the film containing 0.5% ZnO was great enhanced. The average size of ZnO particles was below 100 nm. The introduction of ZnO as nano filler in PSA react as UV shield effect and make the composite mechanical property improved.展开更多
In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and ge...In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.展开更多
基金This work was supported by the Major Science and Technology Projects of Henan Province(221100230200)the National Key Research and Development Program of China(2020YFB1713500)Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210).
文摘Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.
基金the National Natural Science Foundation of China(No.81872813,22108313,82273880)Natural Science Foundation of Jiangsu Province(No.BK 20200573,BK 20200576)+1 种基金Fundamental Research Funds for the Central Universities(No 2632022ZD16)the Scientific Research Fund of Hunan Provincial Education Department(No.22B0820).
文摘Amorphous solid dispersion(ASD)is one of the most effective approaches for delivering poorly soluble drugs.In ASDs,polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level.To prepare the solid dispersions,there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations.Polymer selection is of great importance because it influences the stability,solubility and dissolution rates,manufacturing process,and bioavailability of the ASD.This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers,formulation designs and preparation methods.Furthermore,considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
文摘Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g^-1 to 3.74 dL·g^-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fluid behavior.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50403017).
文摘Monodisperse micron-sized polyacrylamide (PAM) particles with a regular shape have been successfully prepared through dispersion polymerization of the monomer using a rotary reactor. FTIR and NMR spectroscopic results demonstrated the formation of PAM. POM and TEM observations revealed that PAM particles had a regular shape and good dispersity. A thick layer of surfactant (PVP) still existed on PAM particles after multiple centrifugation and ultrasonic re-dispersion in ethanol, which indicates a strong interaction between PVP and PAM. The effects of various polymerization factors on the average size of PAM particles have also been studied.
基金Supported by 863 Hi-Technology Research and Development Program of China (No. G2002AA302211)the National Natural Science Foundation of China (No. 20206032).
文摘Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP) and 2,2’-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of-1μm with superparamagnetic characteristics. The saturation magnetization was found to be 4.5emu.g-1. There was abundance of epoxy groups with density of 0.028 mmol·g^-1 in microspheres. The magnetic PGMA microspheres have extensive potential uses in magnetic bioseparation and biotechnology.
文摘Dispersion copolymerization of styrene with polyethylene glycol 200-dimethacrylae as the cross-linking agent was completed by using poly(N-vinyl pyrrolidone) and 2,2-azo-bisisobutyronitrile as the steric stabilizer and initiator, respectively. Crosslinked copolymeric microspheres were prepared directly by the one-step method of dispersion copolymerization. The effects of the content of polyethylene glycol 200-dimethacrylae on the particle morphology and the copolymerization rate were investigated. It shows that the crosslinking agent plays an important role in the particle morphology and the system stability. When the content of crosslinking reached 2.5wt%, the floriated particles were obtained.
文摘Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.
基金National Natural Science Foundation of China (No20674017)
文摘Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly( styrener-acrylonitrile)-b- poly ( 1, 1, 2, 2-tetrahydroperfluorooctyl methacrylate) (PSAN-b-PFOMA), as steric stabilizers. The structure and the particle morphology of the product were characterised by FT-IR and SEM. In addition, the effects of the stabilizer on the surface properties of the products were investigated in detail. Results indicate that the surface free energy of the poly (AN-r-VAc) (PAVAc) film decreases dramatically because of the existence of the stabilizer. And, when the initial concentration of the monomer was 10% (the mass (g) of monomer to the volume (mL) of ScCO2 ) the optimal concentration of the stabilizer is about 5% (w/w% to monomers).
文摘Fe_3O_4/PS magnetic particles with core/shell structure has been prepared in the presence of Fe3O4 magnetic fluid in ethanol/water mixture.Magnetic particles with diameter size range from 5. 54 t0 187. 32 μm were obtained by different reaction conditions.Some parameters such as ethanol, PEG and monomer which affect particle size diameter and size distribution are discussed briefly in this paper.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金supported by Liaoning Provincial Key Labora-tory of Drug Preparation Design and Evaluation of Liaoning Provincial Education Department(LZ2014045)
文摘To improve the corneal permeability and water-solubility of disulfiram(DSF), which is an ocular drug for cataract, P188 was selected as a matrix to prepare solid dispersion of DSF(DSF SD) by hot melt method. The DSF SD was characterized by DSC, XRD, and IR, and the results suggested that DSF was amorphous in DSF SD. The DSF SD was added to borate buffer solution(BBS) contained 20% poloxamer P407 and 1.2% poloxamer P188 to form in-situ gel. In vitro and in vivo experiments revealed that DSF SD combined with in-situ gel(DSF SD/in-situ gel) increased the residence time and the amount of DSF penetrated through the corneal. The pharmacodynamics studies exhibited DSF SD/in-situ gel delayed the development of selenium-induced cataract at some content. These results investigated that DSF SD/in-situ gel as a drug delivery system can improve DSF ocular permeability.
基金Project(04GK2007) supported by Hunan Industrial Key Project of Science and Technology
文摘The effects of SN5040 and polyethylene glycol(PEG) individually and in combination on the dispersion stability of nano-TiO2 aqueous suspension were investigated by ultraviolet-visible absorption spectroscopy. The adsorption mechanism of these dispersants was detected by zeta potential, isothermal absorption and FTIR analysis. It is found that SN5040 is superior for stabilizing nano-TiO2 in aqueous suspension to PEG in basic region, and the optimum mass fraction of SN5040 addition is 3%. In the case of NaCl addition, the optimum value increases with .the increase of NaCl concentration in the solution. When the mixture of SN5040 and PEG is employed, the antagonism appears preponderant. When SN5040 and PEG are added sequentially, the synergistic reaction takes place. The synergistic reaction can be attributed to the mechanism that PEG adsorption decreases the electronic repulsion between SN5040 molecules, which results in the increase of SN5040 adsorption density. PEG is adsorbed by the interaction with the pre-adsorbed SN5040 layer. Furthermore, the modified inner wall latex paint with well dispersed nano-YiO2 suspension is endowed with excellent ultraviolet absorption and antibacterial properties.
文摘The first approved transdermal drug delivery system in the United States in 1979 is a scopolamine patch for treatment of motion sickness. Transdermal drug delivery system has many advantages over oral route such as it is useful for vomiting and unconscious patients. It can avoid first pass metabolism by the liver. It is non-invasive way and self-administered system compared to injections. The film forming polymeric solutions are a novel transdermal drug delivery system. This system consists of an active drug, film forming polymer, plasticizer.
文摘A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug, polymer-drug composites in the form of nanoparticles were prepared and characterized. The surface morphologies, the physical status of the drug, and the drug-polymer interactions were studied using FESEM, DSC, XRD, and ATR-FTIR. FESEM observations demonstrated that the nanoparticles gradually decreased in size from 640 ± 350, to 530 ± 320, 460 ± 200 and 320 ± 160 nm as the KET content increased from 0, to 9.1%, 16.7% and 33.3% w/w, respectively. Results from DSC and XRD suggested that KET was distributed in the PVP matrix in an amorphous manner at the molecular level. This is thought to be due to their compatibility, arising through hydrogen bonding as demonstrated by ATR- FTIR spectra. In vitro dissolution tests showed that the nanoparticles released the incorporated KET within 1 min, evidencing markedly improved dissolution over pure KET and a KET-PVP physical mixture. Electrospraying can hence offer a facile route to develop new polymer composites for biomedical applications, in particular for improving dissolution rate of poorly water-soluble drugs.
基金Funded by the National Natural Science Foundation of China(No.51403082)
文摘A novel photosensitive copolymer P(SS-co-AA-g-GMA)(PSAG) was synthesized and utilized to noncovalently functionalize pristine single-walled carbon nanotubes(SCNTs). PSAG was highly effective for the solubilization of SCNTs in water and validated by UV-vis absorption spectra experiments, resulting in homogeneous and stable PSAG-SCNT aqueous dispersion. The microstructure of SCNTs was observed through Raman spectroscopy and transmission electron microscopy. In addition, compared with the two common polymeric dispersants of Triton X-100 and PSS, PSAG demonstrated more effective performances for dispersing SCNTs under identical conditions. Furthermore, the photosensitive PSAG-SCNTs can be crosslinked after UV irradiation, leading to significant improvement in the water resistance of SCNT films. UV-cured films can be transferred to plastic wrap to form a flexible film with high electrical conductivity.
文摘Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).
基金Education Commission of Shanghai (No04AB19)Science and Technology Commission of Shanghai Municipal Government(Nano Founds No 0452NM051)
文摘Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylacetamide(DMAc). Atomic force microscopy (AFM) was employed to observe the microstructure of the composite film. The thermal property was investigated by TGA and mechanical property was characterized by DXLL-1000 electromechanical material testing machine. The results showed that the breaking strength of the film containing 0.5% ZnO was great enhanced. The average size of ZnO particles was below 100 nm. The introduction of ZnO as nano filler in PSA react as UV shield effect and make the composite mechanical property improved.
基金Funded by National Natural Science Foundation of China(No.50572121) Key Pre-research Foundation of Weapon and Equipment(No. 9140A27010206JB35)
文摘In-situ characterization of non-aqueous nano-dispersion systems(NANDS) by freeze-etching transmission electron microscope(FETEM) was reported.To improve just-for-once successive rate of specimen preparation and get good characterization results,an improving specimen preparation method of freezing etching was developed.Size,distribution and morphology of NANDS were directly visualized.Some information of particle dispersion feature and particle density can also be obtained.Reproductivity of the FETEM characterization is excellent.Comparing with laser scattering method,which is liable to give positive error especially for small size particle anchoring disperser,FETEM characterization can give more accurate measurement of particle size.Moreover,FETEM can give dispersion feature of nanoparticle in non-aqueous medium.