The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties...The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.展开更多
Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such...Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a...We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.展开更多
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s...Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.展开更多
The preparation of fine TiC powders by carbothermal reduction of TiO2 in vacuum was investigated by XRD,SEM,XRF and laser particle sizer.Thermodynamic analysis indicates that it is easy to prepare TiC in vacuum and th...The preparation of fine TiC powders by carbothermal reduction of TiO2 in vacuum was investigated by XRD,SEM,XRF and laser particle sizer.Thermodynamic analysis indicates that it is easy to prepare TiC in vacuum and the formation sequence of products are Ti4O7(Magneli phase),Ti3O5,Ti2O3,TiCxO1-x and TiC with the increase of reaction temperature.Experimental results demonstrate that TiC powders with single phase are obtained with molar ratio of TiO2 to C ranging from 1:3.2 to 1:6 at 1 550 ℃ for 4 h when the system pressure is 50 Pa,and TiC1.0 is gained when the molar ratio of TiO2 to C is 1:4 and 1:5.In addition,fine TiC1.0 powders(D50 equals 3.04 μm) with single phase and low impurities are obtained when the molar ratio of TiO2 to C is 1:4.SEM observation shows that uniform shape,low agglomeration,and loose structure are observed on the surface of block product.展开更多
V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were ...V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.展开更多
Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles ...Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overco...Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.展开更多
The reduction of molecular nitrogen(N_(2))to ammonia(NH_(3))under mild conditions is one of the most promising studies in the energy field due to the important role of NH_(3)in modern industry,production,and life.The ...The reduction of molecular nitrogen(N_(2))to ammonia(NH_(3))under mild conditions is one of the most promising studies in the energy field due to the important role of NH_(3)in modern industry,production,and life.The photocatalytic reduction of N_(2)is expected to achieve clean and sustainable NH_(3)production by using clean solar energy.To date,the new photocatalysts for photocatalytic reduction of N_(2)to NH_(3)at room temperature and atmospheric pressure have not been fully developed.The major challenge is to achieve high light-absorption efficiency,conversion efficiency,and stability of photocatalysts.Herein,the methods for measuring produced NH_(3)are compared,and the problems related to possible NH_(3)pollution in photocatalytic systems are mentioned to provide accurate ideas for measuring photocatalytic efficiency.The recent progress of nitrogen reduction reaction(NRR)photocatalysts at ambient temperature and pressure is summarized by introducing charge transfer,migration,and separation in photocatalytic NRR,which provides a guidance for the selection of future photocatalyst.More importantly,we introduce the latest research strategies of photocatalysts in detail,which can guide the preparation and design of photocatalysts with high NRR activity.展开更多
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ...Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery.展开更多
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of...In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.展开更多
A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR...A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.展开更多
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ...The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.展开更多
A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numeric...A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao's transmitting boundary and viscous-spring boundary with Liu's method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ_1 and φ_2, the rational distance between the observation point and the MDRM boundary is suggested. When φ_1 >2 or φ_2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.展开更多
Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereaf...Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.展开更多
Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).How...Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.展开更多
Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the...Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.展开更多
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv...Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.展开更多
基金This research was funded by the National Natural Science Foundation of China(51709194),Qinglan Project of Jiangsu University,the Priority Academic Program Development of Jiangsu Higher Education Institutions,and Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering.
文摘The calculation of the factor of safety(FOS)is an important means of slope evaluation.This paper proposed an improved double strength reductionmethod(DRM)to analyze the safety of layered slopes.The physical properties of different soil layers of the slopes are different,so the single coefficient strength reduction method(SRM)is not enough to reflect the actual critical state of the slopes.Considering that the water content of the soil in the natural state is the main factor for the strength of the soil,the attenuation law of shear strength of clayey soil changing with water content is fitted.This paper also establishes the functional relationship between different reduction coefficients.Then,a USDFLD subroutine is programmed using the secondary development function of finite element software.Controlling the relationship between field variables and calculation time realizes double strength reduction applicable to the layered slope.Finally,by comparing the calculation results of different examples,it is proved that the stress and displacement distribution of the critical slope state obtained by the improved method is more realistic,and the calculated safety factor is more reliable.The newly proposedmethod considers the difference of intensity attenuation between different soil layers under natural conditions and avoids the disadvantage of the strength reduction method with uniform parameters,which provides a new idea and method for stability analysis of layered and complex slopes.
基金financial support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX24_0690)financial support from the National Natural Science Foundation of China (Project No. 22275088, 52101260)+4 种基金the Project of Shuangchuang Scholar of Jiangsu Province (Project No. JSSCBS20210212)the Fundamental Research Funds for the Central Universities (Project No. 30921011203)the Start-Up Grant (Project No. AE89991/340) from Nanjing University of Science and Technologyfinancial support from the Foundation of Jiangsu Educational Committee (22KJB310008)the Senior Talent Program of Jiangsu University (20JDG073)
文摘Ammonia(NH_(3))is an important raw material for modern agriculture and industry,being widely demanded to sustain the sustainable development of modern society.Currently,the industrial production methods of NH_(3),such as the traditional Haber-Bosch process,have drawbacks including high energy consumption and significant carbon dioxide emissions.In recent years,the electrocatalytic nitrate reduction reaction(NO_(3)RR)powered by intermittent renewable energy sources has gradually become a multidisciplinary research hotspot,as it allows for the efficient synthesis of NH_(3)under mild conditions.In this review,we focus on the research of electrocatalysts with atomic-level site,which have attracted attention due to their extremely high atomic utilization efficiency and unique structural characteristics in the field of NO_(3)RR.Firstly,we introduce the mechanism of nitrate reduction for ammonia synthesis and discuss the in-situ characterization techniques related to the mechanism study.Secondly,we review the progress of the electrocatalysts with atomic-level site for nitrate reduction and explore the structure-activity relationship to guide the rational design of efficient catalysts.Lastly,the conclusions of this review and the challenges and prospective of this promising field are presented.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
文摘We propose a novel framework for learning a low-dimensional representation of data based on nonlinear dynamical systems,which we call the dynamical dimension reduction(DDR).In the DDR model,each point is evolved via a nonlinear flow towards a lower-dimensional subspace;the projection onto the subspace gives the low-dimensional embedding.Training the model involves identifying the nonlinear flow and the subspace.Following the equation discovery method,we represent the vector field that defines the flow using a linear combination of dictionary elements,where each element is a pre-specified linear/nonlinear candidate function.A regularization term for the average total kinetic energy is also introduced and motivated by the optimal transport theory.We prove that the resulting optimization problem is well-posed and establish several properties of the DDR method.We also show how the DDR method can be trained using a gradient-based optimization method,where the gradients are computed using the adjoint method from the optimal control theory.The DDR method is implemented and compared on synthetic and example data sets to other dimension reduction methods,including the PCA,t-SNE,and Umap.
基金supported by is supported by the Shanghai Municipal Science and Technology Major Projectthe support from Shanghai Super Postdoctoral Incentive Program
文摘Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials.
基金Project(u0837604)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(51004058)supported by the National Natural Science Foundation of ChinaProject(20095314110003)supported by Specialized Research Fund for the Doctoral Program of Higher Education
文摘The preparation of fine TiC powders by carbothermal reduction of TiO2 in vacuum was investigated by XRD,SEM,XRF and laser particle sizer.Thermodynamic analysis indicates that it is easy to prepare TiC in vacuum and the formation sequence of products are Ti4O7(Magneli phase),Ti3O5,Ti2O3,TiCxO1-x and TiC with the increase of reaction temperature.Experimental results demonstrate that TiC powders with single phase are obtained with molar ratio of TiO2 to C ranging from 1:3.2 to 1:6 at 1 550 ℃ for 4 h when the system pressure is 50 Pa,and TiC1.0 is gained when the molar ratio of TiO2 to C is 1:4 and 1:5.In addition,fine TiC1.0 powders(D50 equals 3.04 μm) with single phase and low impurities are obtained when the molar ratio of TiO2 to C is 1:4.SEM observation shows that uniform shape,low agglomeration,and loose structure are observed on the surface of block product.
基金Project (2006AA068128) supported by the High-tech Research and Development Program of China
文摘V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.
文摘Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
基金the National Natural Science Foundation of China(No.52072256)Shanxi Science and Technology Major Project(No.20201101016)+1 种基金Key R&D program of Shanxi Province(No.202102030201006)Research Project Supported by Shanxi Scholarship Council of China(HGKY2019031).
文摘Electrocatalytic oxygen reduction reaction(ORR)is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries,etc.However,the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process,and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction.This makes them difficult to be accurately captured,making the identification of ORR active sites and the elucidation of ORR mechanisms difficult.Thus,it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR.This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts.Specifically,the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized,such as phase,valence,electronic transfer,coordination,and spin states varies.In-situ revelation of intermediate adsorption/desorption behavior,and the real-time monitoring of the product nucleation,growth,and reconstruction evolution are equally emphasized in the discussion.Other interference factors,as well as in-situ signal assignment with the aid of theoretical calculations,are also covered.Finally,some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
基金Taishan Scholars Program of Shandong Province,Grant/Award Number:tsqn201812068Higher School Youth Innovation Team of Shandong Province,Grant/Award Number:2019KJA013+1 种基金The Opening Fund of State Key Laboratory of Heavy Oil Processing,Grant/Award Number:SKLOP202002006National Natural Science Foundation of China,Grant/Award Number:51872173。
文摘The reduction of molecular nitrogen(N_(2))to ammonia(NH_(3))under mild conditions is one of the most promising studies in the energy field due to the important role of NH_(3)in modern industry,production,and life.The photocatalytic reduction of N_(2)is expected to achieve clean and sustainable NH_(3)production by using clean solar energy.To date,the new photocatalysts for photocatalytic reduction of N_(2)to NH_(3)at room temperature and atmospheric pressure have not been fully developed.The major challenge is to achieve high light-absorption efficiency,conversion efficiency,and stability of photocatalysts.Herein,the methods for measuring produced NH_(3)are compared,and the problems related to possible NH_(3)pollution in photocatalytic systems are mentioned to provide accurate ideas for measuring photocatalytic efficiency.The recent progress of nitrogen reduction reaction(NRR)photocatalysts at ambient temperature and pressure is summarized by introducing charge transfer,migration,and separation in photocatalytic NRR,which provides a guidance for the selection of future photocatalyst.More importantly,we introduce the latest research strategies of photocatalysts in detail,which can guide the preparation and design of photocatalysts with high NRR activity.
基金financially supported by the National Natural Science Foundation of China(21674068,52173133,52161145402)the Sichuan Science and Technology Department(2021YFH0180)。
文摘Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery.
基金Project(KZCX2-YW-T12)supported by the Chinese Academy of Science,China
文摘In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method.
基金supported by the National Natural Science Foundation of China (No. 50768001)the Foundation of New Century Excellent Talents in University (No. NCET-04-0834)the Guangxi Natural Science Foundation (No. 0728026)
文摘A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.
基金Project(11102218) supported by the National Natural Science Foundation of China
文摘The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.
基金National Natural Science Foundation of China under Grant Nos.91315301,51478279the State Key Laboratory Basic Theory Foundation of the Ministry of Science and Technology of China under the Grant SLDRCE08-A-07
文摘A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao's transmitting boundary and viscous-spring boundary with Liu's method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ_1 and φ_2, the rational distance between the observation point and the MDRM boundary is suggested. When φ_1 >2 or φ_2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.51379181)Phase Ⅲ Project(2018-2021)of the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Based on the regional water resources carrying capacity(WRCC)evaluation principles and evaluation index system in the National Technical Outline of Water Resources Carrying Capacity Monitoring and Early Warning(hereafter referred to as the Technical Outline),this paper elaborates on the collection and sorting of the basic data of water resources conditions,water resources development and utilization status,social and economic development in basins,analysis and examination of integrity,consistency,normativeness,and rationality of the basic data,and the necessity of WRCC evaluation.This paper also describes the technique of evaluating the WRCC in prefecture-level cities and city-level administrative divisions in the District of the Taihu Lake Basin,which is composed of the Taihu Lake Basin and the Southeastern River Basin.The evaluation process combines the binary index evaluation method and reduction index evaluation method.The former,recommended by the Technical Outline,uses the total water use and the amount of exploited groundwater as evaluation indices,showing stronger operability,while the latter is developed by simplifying and optimizing the comprehensive index system with greater systematicness and completeness.The mutual validation and adjustment of the results of the above-mentioned two evaluation methods indicate that the WRCC of the District of the Taihu Lake Basin is overloaded in general because some prefecture-level cities and city-level administrative divisions in the Taihu Lake Basin and the Southeastern River Basin are in a severely overloaded state.In order to explain this conclusion,this paper analyzes the causes of WRCC overloading from the aspects of basin water environment,water resources development and utilization,water resources regulation and control ability,water resources utilization efficiency,and water resources management.
基金Project([2005]205)supported by the Science and Technology Planning Project of Water Resources Department of Guangdong Province,ChinaProject(2012-7)supported by Guangdong Bureau of Highway Administration,ChinaProject(2012210020203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Employing an ideal elasto-plastic model,the typically used strength reduction method reduced the strength of all soil elements of a slope.Therefore,this method was called the global strength reduction method(GSRM).However,the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable.For most slopes,failure occurs once the strength of some regional soil is sufficiently weakened; thus,the local strength reduction method(LSRM)was proposed to analyze slope stability.In contrast with GSRM,LSRM only reduces the strength of local soil,while the strength of other soil remains unchanged.Therefore,deformation by LSRM is more reasonable than that by GSRM.In addition,the accuracy of the slope's deformation depends on the constitutive model to a large degree,and the variable-modulus elasto-plastic model was thus adopted.This constitutive model was an improvement of the Duncan–Chang model,which modified soil's deformation modulus according to stress level,and it thus better reflected the plastic feature of soil.Most importantly,the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests,and parameters determination by plate loading test and pressuremeter test were introduced.Therefore,it is easy to put this model into practice.Finally,LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide.Safety factor,deformation field,and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.
基金Project(51178457) supported by the National Natural Science Foundation of ChinaProject(cstc2012jjys0001) supported by the Natural Science Foundation of Chongqing,ChinaProject(L2011231) supported by the Liaoning Education Department,China
文摘Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional anti SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (Css) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined 10adings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But .the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.
基金Supported by National "Twelfth Five-Year" Plan for Science&Technology Support of China(Grant No.2011BAK06B05)National High-tech Research and Development Program of China(863 Program,Grant No.2013AA040203)Shanxi Scholarship Council of China(Grant No.2015-088)
文摘Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.