期刊文献+
共找到6,903篇文章
< 1 2 250 >
每页显示 20 50 100
Correlation between the rock mass properties and maximum horizontal stress:A case study of overcoring stress measurements
1
作者 Peng Li Meifeng Cai +2 位作者 Shengjun Miao Yuan Li Yu Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期39-48,共10页
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre... Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data. 展开更多
关键词 overcoring stress measurements elastic modulus Poisson's ratio rock quality designation maximum horizontal stress fuzzy identification
下载PDF
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field
2
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
下载PDF
Principle of in-situ 3D rock stress measurement with borehole wall stress relief method and its preliminary applications to determination of in-situ rock stress orientation and magnitude in Jinping hydropower station 被引量:13
3
作者 GE XiuRun HOU MingXun 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第4期939-949,共11页
As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely chal... As a main constituent of geological body, the rock masses have distinct differences from other materials, one of which is that rock masses are initially stressed in their natural states. Hence, it is an extremely challenging and significant research project to know the present residual stress of the rock masses in the earth's crust. Although some regularities of distribution of in-situ rock stresses can be deduced, the basic means to study the state of rock stress is in-situ stress measurement. After a brief review of several measuring methods of in-situ 3D rock stress, a new one, borehole wall stress relief method (BWSRM) to determine the in-situ 3D rock stress tensor in a single drilled borehole was proposed. Based on the principle of in-situ rock stress measurement with BWSRM, an original geostress measuring instrument was designed and manufactured. Preliminary experiments for determination of in-situ stress orientation and magnitude were carried out at an experimental tunnel in Jinping Ⅱ hydropower station in China, where the buried depth of overburden was about 2430 m. The results showed that it was feasible to measure the in-situ 3D rock stresses with BWSRM presented in this paper. The BWSRM has a broad prospect for in-situ 3D rock stress measurements in practical rock engineering. 展开更多
关键词 rock mechanics and engineering in-situ rock stress measurement stress relief method Jinping hydropower engineering
原文传递
Disturbance failure mechanism of highly stressed rock in deep excavation:Current status and prospects 被引量:1
4
作者 Tao Wang Weiwei Ye +3 位作者 Liyuan Liu Kai Liu Naisheng Jiang Xianhui Feng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期611-627,共17页
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre... This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions. 展开更多
关键词 deep rock with high stress highly stressed rock rock failure residual stress energy release
下载PDF
Impact of effective stress on permeability for carbonate fractured-vuggy rocks 被引量:1
5
作者 Ke Sun Huiqing Liu +5 位作者 Juliana Y.Leung Jing Wang Yabin Feng Renjie Liu Zhijiang Kang Yun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期942-960,共19页
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef... To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs. 展开更多
关键词 Effective stress PERMEABILITY Carbonate fractured-vuggy rocks Structure characteristics stress sensitivity
下载PDF
3D DEM simulation of hard rock fracture in deep tunnel excavation induced by changes in principal stress magnitude and orientation 被引量:2
6
作者 Weiqi Wang Xia-Ting Feng +2 位作者 Qihu Wang Rui Kong Chengxiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3870-3884,共15页
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ... To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress. 展开更多
关键词 Deep hard rock tunnel Three-dimensional(3D)discrete element model(DEM) Magnitude and orientation of principal stress Transient unloading Fracture mechanism
下载PDF
Modeling time-dependent mechanical behavior of hard rock considering excavation-induced damage and complex 3D stress states 被引量:1
7
作者 Peiyang Yu Xiuli Ding +3 位作者 Peng-Zhi Pan Shuting Miao Zhaofeng Wang Shuling Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4046-4065,共20页
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon... To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed. 展开更多
关键词 Hard rock Excavation damage Complex stress state Three-dimensional(3D)time-dependent model
下载PDF
Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress 被引量:21
8
作者 YANG Jia-cai LIU Ke-wei +1 位作者 LI Xu-dong LIU Zhi-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3149-3162,共14页
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ... In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance. 展开更多
关键词 in-situ stress stress initialization method dynamic disturbance numerical simulation rock mass
下载PDF
Measurement and study of the distributing law of in-situ stresses in rock mass at great depth 被引量:4
9
作者 Zhuoying Tan Meifeng Cai 《Journal of University of Science and Technology Beijing》 CSCD 2006年第3期207-212,共6页
To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeles... To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining. 展开更多
关键词 rock mass at great depth earth stress hydraulic fracturing in-situ stress distribution
下载PDF
Performance of water-coupled charge blasting under different in-situ stresses
10
作者 ZHOU Zi-long WANG Zhen +2 位作者 CHENG Rui-shan CAI Xin LAN Ri-yan 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2300-2320,共21页
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ... Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses. 展开更多
关键词 water-coupled blasting in-situ stress water-coupled charge coefficient rock type borehole-connection angle
下载PDF
A continuous and long-term in-situ stress measuring method based on fiber optic. Part I: Theory of inverse differential strain analysis
11
作者 Kun-Peng Zhang Mian Chen +2 位作者 Chang-Jun Zhao Su Wang Yong-Dong Fan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1171-1189,共19页
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres... A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method. 展开更多
关键词 in-situ stress Fiber optic Orthotropic elastic Differential evolution ABAQUS
下载PDF
Blasting induced dynamic stress concentration and failure characteristics of deep-buried rock tunnel
12
作者 ZHAO Rui TAO Ming +2 位作者 XIANG Gong-liang WANG Shao-feng ZHAO Hua-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2321-2340,共20页
In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavel... In this study,the dynamic stress concentration factors(DSCF)around a straight-wall arch tunnel(SWAT)were solved analytically utilizing the complex variable function methods and Duhamel’s integral.The effects of wavelength,incident angle,and blasting rising time on the DSCF distribution were analyzed.Theoretical results pointed out dynamic disturbances resulting in compressive stress concentration in the vertical direction and tensile stress in the incident direction.As the wavelength and rising time increased,there was a tendency for the amplitude of stress concentration to initially rise and then converge.Moreover,a series of 3D FEM models were established to evaluate the effect of different initial stress states on the dynamic failure of the tunnel surrounding rock.The results indicated that the failure of the surrounding rock was significantly influenced by the direction of the static maximum principal stress and the direction of the dynamic disturbance.Under the coupling of static and blasting loading,damage around the tunnel was more prone to occur in the dynamic and static stress concentration coincidence zone.Finally,the damage modes of rock tunnel under static stress and blasting disturbance from different directions were summarized and a proposed support system was presented.The results reveal the mechanisms of deep-buried rock tunnel destruction and dynamically triggered rockburst. 展开更多
关键词 stress wave scattering dynamic stress analysis rock tunnel dynamic failure analysis
下载PDF
An Estimation Method of Stress in Soft Rock Based on In-situ Measured Stress in Hard Rock 被引量:4
13
作者 Li Wen-ping LI Xiao-qin SUN Ru-hua 《Journal of China University of Mining and Technology》 EI 2007年第3期310-315,320,共7页
The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an el... The law of variation of deep rock stress in gravitational and tectonic stress fields is analyzed based on the Hoek-Brown strength criterion. In the gravitational stress field,the rocks in the shallow area are in an elastic state and the deep,relatively soft rock may be in a plastic state. However,in the tectonic stress field,the relatively soft rock in the shallow area is in a plastic state and the deep rock in an elastic state. A method is proposed to estimate stress values in coal and soft rock based on in-situ measurements of hard rock. Our estimation method relates to the type of stress field and stress state. The equations of rock stress in various stress states are presented for the elastic,plastic and critical states. The critical state is a special stress state,which indicates the conversion of the elastic to the plastic state in the gravitational stress field and the conversion of the plastic to the elastic state in the tectonic stress field. Two cases stud-ies show that the estimation method is feasible. 展开更多
关键词 rock stress gravity stress tectonic stress critical depth estimation method
下载PDF
A modified smoothed particle hydrodynamics method considering residual stress for simulating failure and its application in layered rock mass
14
作者 XIA Chengzhi SHI Zhenming KOU Huanjia 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2091-2112,共22页
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat... Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses. 展开更多
关键词 Smoothed particle hydrodynamics Cracking strategy Residual stress Layered rock Crack propagation
下载PDF
Influences of clean fracturing fluid viscosity and horizontal in-situ stress difference on hydraulic fracture propagation and morphology in coal seam
15
作者 Gang Wang Shuxin Wang +5 位作者 Yixin Liu Qiming Huang Shengpeng Li Shuliang Xie Jinye Zheng Jiuyuan Fan 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期159-175,共17页
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ... The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters. 展开更多
关键词 Clean fracturing fluid Hydraulic fracturing VISCOSITY Horizontal in-situ stress difference Hydraulic fracture morphology Acoustic emission
下载PDF
Rock strength weakening subject to principal stress rotation:Experimental and numerical investigations
16
作者 Huandui Liu Guibin Wang +2 位作者 Chunhe Yang Junyue Zhang Shiwan Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3544-3557,共14页
During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in... During the construction and operation of gas storage reservoirs,changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress,potentially leading to failure in the surrounding rock.However,the weakening of strength due to pure stress rotation has not yet been investigated.Based on fracture mechanics,an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations.The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed.The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage.As the differential stress increases,stress rotation is more likely to induce rock damage,leading to a transition from brittle to plastic failure,characterized by wider fractures and a more complex fracture network.Overall,a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress.The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel.This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs. 展开更多
关键词 Principal stress rotation(PSR) Fracture mechanics Hollow cylinder torsional apparatus for rock (HCAR) Particle flow method rock strength
下载PDF
A novel indirect optical method for rock stress measurement using microdeformation field analysis
17
作者 Yujie Feng Peng-Zhi Pan +2 位作者 Zhaofeng Wang Xufeng Liu Shuting Miao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3616-3628,共13页
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r... Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field. 展开更多
关键词 rock stress measurement Optical technology Digital image correlation(DIC)technology Micro-deformation field
下载PDF
A thermal stress loading technique for large-sized hot dry rock mechanical tests
18
作者 Huiling Ci Bing Bai +2 位作者 Hongwu Lei Yan Zou Jianfeng Liu 《Deep Underground Science and Engineering》 2024年第3期326-337,共12页
Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra... Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed. 展开更多
关键词 deep rock engineering high-temperature and high-stress conditions hot dry rock large-sized model test thermal stress loading
下载PDF
Analysis on method for effective in-situ stress measurement in hot dry rock reservoir 被引量:2
19
作者 SUN Dong-sheng ZHAO Wei-hua +1 位作者 LI A-wei ZHANG An-bin 《Journal of Groundwater Science and Engineering》 2015年第1期9-15,共7页
With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The... With the rapid increase of energy demand and the increasingly highlighted environmental problems, clean, safe and widely distributed geothermal resources have become a hot spot for renewable resources development. The state of in-situ stress is a major control parameter for multiple links including well location, fracture inspiration and reservoir assessment, so how to determine the accurate state of in-situ stress in the deep thermal reservoir becomes a core problem drawing widely attention and urgent to be solved. Based on features of hot dry rock reservoir in terms of temperature and pressure and the comparison analysis, this article proposes the method of Anelastic Strain Recovery(ASR) as an effective method for determining the state of in-situ stress in the area with HDR resources distributed and explains the availability of ASR method by application examples. 展开更多
关键词 Geothermy HDR in-situ stress measurement ASR method
下载PDF
State of in-situ stress in different rocks
20
作者 朱焕春 陶振宇 《Acta Seismologica Sinica(English Edition)》 CSCD 1994年第1期67-83,共17页
According to the regression analysis of measured stress data in magmatite,sedimentary and metamorphic rock all over the world,it is found that the stress state in the three rocks is different and closely related to it... According to the regression analysis of measured stress data in magmatite,sedimentary and metamorphic rock all over the world,it is found that the stress state in the three rocks is different and closely related to its formation.The relationships among the stress and depth and the Young's modulus of rock are also discussed and the results show that stress can increase with the Young's modulus. 展开更多
关键词 LITHOLOGY rock stress DEPTH
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部