The effect of protons(E = 100 keV,F = 5×10^(15) cm^(-2)) exposure on the diffuse reflectance spectra of the SiO_(2 )with different size particles in wavelength range from 250 to 2500 nm have been investigated.Par...The effect of protons(E = 100 keV,F = 5×10^(15) cm^(-2)) exposure on the diffuse reflectance spectra of the SiO_(2 )with different size particles in wavelength range from 250 to 2500 nm have been investigated.Particles were nanosphere,submicrosphere,microsphere and submacrosphere,as well as solid micro-and nanocrystals.The synthesis of the particles was carried out by the formation of silica shells and dissolution of the polystyrene core particles.The surface morphology,surface area and crystal structure of the particles have been investigated.When evaluating the changes of the solar absorptance,it was found that the radiation stability of the micro-and submacro-hollow particles is higher than that of the other nanostructured particles,except for solid microcrystals.The low radiation stability of the hollow microparticles is due to the large void inside the hollow particles where radiation defects are not formed.展开更多
The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon diox...The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.展开更多
Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transf...Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and diffuse reflectance spectra (DRS). Photocatalytic activities of Nd/TiO2-SiO2 with different neodymium contents were evaluated by degradation of methyl orange. The light absorption of Nd/TiO2-SiO2 increased with increasing doping neodymium in a visible light range of 388-619 nm, and Nd doping was in favor of decreasing the recombination of photo-generated electrons with holes. Nd and SiO2 improved the photocatalytic activity of TiO2. The optimal molar fraction of Nd to Ti was 0.1%, and the optimum calcination temperature was 600 ℃. The highest degradation rate of methyl orange was 82.9% after irradiation for 1 h.展开更多
The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, ...The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, main root length and number of lateral roots were measured every 15 days during growing season from May 30 to Oct. 20. Experimental results showed that TMS treatments greatly promoted seedling growth and improved seedling quality. The treatment by 500 μL·L?1 TMS produced the best result, for which the mean height, root collar diameter, main root length, and the number of lateral roots of seedlings were increased by 42.5%, 30.7%, 14.0%, and 31.6%, respectively, compared to that of the control seedlings. As to seedling quality, grade-I seedling and grade-II seedlings were fifty-fifty, and no grade-III seedlings was found. The treatment by 500 μL·L?1 TMS resulted in the highest chlorophyll concentration. Keywords Changbai Larch - Larix olgensis - Seedling production - Nanostructured silicon dioxide CLC number S143.8 Document code B Foundation item: This study is supported by Jilin Forestry Group Co.Biography: LIN Baoshan (1955-), male, Associate professor at the college of forestry, Beihua University, Jilin City 132011, Jilin Province, P.R China.Responsible editor: Chai Ruihai.展开更多
Based on the composite modification technology of the surface of nano Silicondioxide by non-soap emulsion polymerization, it is verified that there are polymer grafted on thesurface of nano silicon dioxide. The modifi...Based on the composite modification technology of the surface of nano Silicondioxide by non-soap emulsion polymerization, it is verified that there are polymer grafted on thesurface of nano silicon dioxide. The modification mechanism and the bonding status on the surface ofnano silicon dioxide after modification were suggested via the results of the infrared spectrum,transmission electronic microscope photograph and X-ray photoelectron spectrum. The hydroxyl formedby hydrolyzing of silane coupling agent reacts with hydroxyl on the surface of nano silicon dioxideto form Si-O-Si bonds by losing water molecules and hence the double bonds are introduced onto thesurface of nano silicon dioxide. The surface of nano silicon dioxide is grafted with polymer throughfree radical polymerization between the double bonds on the surface of nano silicon dioxide andstyrene under the action of initiating agent. The dispersibility of nano silicon dioxide and thecontrollability of surface modification of nano silicon dioxide can be greatly improved by themodification process.展开更多
Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of...Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared (FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.展开更多
This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dio...This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dioxide/polystyrene composite microspheres solid-phase extraction and detection with HPLC-ESI-MS. The influence of several operational parameters, including the eluant and its volume, the flow rate and acidity of water sample were investigated and optimized. Under the optimum conditions, the limits of detection were 1.0 ng/L, 2.5 and 4.5 ng/L for TCC, TCS, and MTCS, respectively. The linearity of the method was observed in the range of 5-2000 ng/L, with correlation coefficients (r2) >.99. The spiked recoveries of TCC, TCS and MTCS in water sampleswereachieved in the range of 89.5% -96.8% with RSD below 5.7%. The proposed method has been successfully applied to analyze real water samples and satisfactory results were achieved.展开更多
Adsorption experiment from aqueous solutions containing known amount of chromium (Cr) using hybrid membrane of chitosan and silicon dioxide was explored to evaluate the efficiency of the membrane as sorbent for Cr...Adsorption experiment from aqueous solutions containing known amount of chromium (Cr) using hybrid membrane of chitosan and silicon dioxide was explored to evaluate the efficiency of the membrane as sorbent for Cr(VI). Some variable parameters such as pH, contact time and the dosage of the membrane were optimized. Adsorption isotherms of Cr(VI) onto the hybrid membrane were measured with varying initial concentrations under optimized condition. Furthermore, the sorption mechanism of Cr by the membrane was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. The surface morphology of the membrane was determined by SEM (scanning electron microscope) for material characterization. The concentrations of Cr in solution are determined by ICP-MS (inductively coupled plasma mass spectrometry). Hybrid membrane of chitosan and silicon dioxide can be an efficient sorbent for Cr(VI).展开更多
This paper describes a new method to create nanoscale SiO2 pits or channels using single-walled carbon nanotubes (SWNTs) in an HF solution at room temperature within a few seconds. Using aligned SWNT arrays, a patte...This paper describes a new method to create nanoscale SiO2 pits or channels using single-walled carbon nanotubes (SWNTs) in an HF solution at room temperature within a few seconds. Using aligned SWNT arrays, a pattern of nanoscale SiO2 channels can be prepared. The nanoscale SiO2 patterns can also be created on the surface of three- dimensional (3D) SiO2 substrate and even the nanoscale trenches can be constructed with arbitrary shapes. A possible mechanism for this enhanced etching of SiO2 has been qualitatively analysed using defects in SWNTs, combined with H3O+ electric double layers around SWNTs in an HF solution.展开更多
Objective:To investigate the protective and therapeutic role of ginseng against silicon dioxide nanoparticles(SiO2NPs)-induced toxicity in the lungs.Methods:Sixty male rats were divided into five groups(n=12/group);gr...Objective:To investigate the protective and therapeutic role of ginseng against silicon dioxide nanoparticles(SiO2NPs)-induced toxicity in the lungs.Methods:Sixty male rats were divided into five groups(n=12/group);group 1 was used as a control,group 2 received ginseng,group 3 was treated with SiO2NPs,and group 4 was pretreated with ginseng one week before SiO2NPs,while group 5 was given SiO2NPs one week before supplementation with ginseng.Animals were treated with both ginseng and SiO2NPs orally for five weeks.Real-time PCR was used to measure gene expression.Besides,DNA damage and cell cycle changes were determined by comet assay and flow cytometry,respectively.Histological study was also done to assess the effect of ginseng on SiO2NPs-induced toxicity.Results:SiO2NPs increased lipid peroxidation and decreased the activities of antioxidant enzymes.SiO2NPs induced apoptosis in lung tissues as revealed by upregulation of Bax and caspase 3 and downregulation of Bcl-2 as well as the induction of DNA damage.SiO2NPs also caused inflammation as indicated by upregulation of the inflammation-related genes[interleukin 1 beta(IL-1β),tumor necrosis factor-alpha(TNF-α),nuclear factor kappa B(NF-κB),cyclooxygenase 2(COX2),and transforming growth factor-beta 1(TGFβ1)]as well as cell cycle arrest in the G0/G1 phase of lung cells.Moreover,histopathological examination proved the biochemical and molecular perturbations that occurred due to SiO2NPs toxicity.However,ginseng alleviated SiO2NPs-induced toxicity in rat lung.Conclusions:Ginseng has a potent preventive and therapeutic effect and could be used in the treatment of SiO2NPs-induced pulmonary toxicity.展开更多
This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon ...This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material.展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated.The wear mechanisms were mainly discusse...The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated.The wear mechanisms were mainly discussed by observations of both worn surfaces and their side views.The results indicated that the variations of wear resistance with increasing of silicon particle content,at all of the testing temperatures applied,showed a similar tendency with a manner of non-monotonous change.It was surprised that the wear resistance decreased with the increase of silicon particle content from 2 vol.%to 5 vol.%,while it increased when the content was less than 2 vol.%or more than 5 vol.%.Similarly,the friction coefficient also did not change monotonously.The dominative wear mechanism changed from a relatively severe regime of plastic deformation accompanied by adhesion wear to a mild regime of smear,then to a very severe regime of severe plastic deformation induced wear,and finally again to a relatively mild regime of smear accompanied by abrasive wear as the silicon content increased.The wear resistance always decreased with elevating testing temperature,but the decrease ranges were different for the composites with different silicon contents.The friction coefficients changed irregularly for the different composites with the increase of testing temperature.Correspondingly,the wear mechanism alternated from a mild regime of smear accompanied by abrasive wear to a severe regime of plastic deformation accompanied by adhesion wear.展开更多
In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs t...In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.展开更多
In recent years,there is a strong interest in thermal cloaking at the nanoscale,which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical m...In recent years,there is a strong interest in thermal cloaking at the nanoscale,which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical macroscopic thermal cloak model.Silicon carbide,as a representative of the third-generation semiconductor material,has splendid properties,such as the high thermal conductivity and the high wear resistance.Therefore,in the present study,we build a nanoscale thermal cloak based on silicon carbide.The cloaking performance and the perturbation of the functional area to the external temperature filed are analyzed by the ratio of thermal cloaking and the response temperature,respectively.It is demonstrated that silicon carbide can also be used to build the nanoscale thermal cloak.Besides,we explore the influence of inner and outer radius on cloaking performance.Finally,the potential mechanism of the designed nanoscale thermal cloak is investigated by calculating and analyzing the phonon density of states(PDOS)and mode participation rate(MPR)within the structure.We find that the main reason for the decrease in the thermal conductivity of the functional area is phonon localization.This study extends the preparation method of nanoscale thermal cloaks and can provide a reference for the development of other nanoscale devices.展开更多
The recognized energy storage mechanism of neutral aqueous zinc-manganese batteries is the co-insertion/extrusion of H^(+) and Zn^(2+) ions.However,modulating the kinetics of a single H^(+) or Zn^(2+) ion is scarce,wh...The recognized energy storage mechanism of neutral aqueous zinc-manganese batteries is the co-insertion/extrusion of H^(+) and Zn^(2+) ions.However,modulating the kinetics of a single H^(+) or Zn^(2+) ion is scarce,which can provide meaningful insights into the energy storage mechanism of Zn ion batteries.Herein,a distinctive doubly electric field in-situ induced cationic anchoring of two-dimensional layered MnO_(2) is successfully constructed to modulate the insertion/extrusion of a single H^(+) or Zn^(2+) ion.As a result,regulating the intercalation of different metal ions can precisely achieve the accelerated induction for the individual H^(+) or Zn^(2+) ions intercalation/deintercalation.Moreover,the introduction of metal ions stabilizes the lattice distortion and alleviates the irreparable structural collapse,leading to an increase in the H^(+)/Zn^(2+) storage sites,efficiently diminishing the stagnation of the ordered structure and creating the more open channels,which is conducive to facilitating the diffusion of ions.This work delivers some innovative insights into pre-embedding strategies,and also serves as a precious reference for the cathode development of advanced aqueous batteries.展开更多
基金Sponsored by the Ministry of Science and Higher Education of the Russian Federation(Grant No.FZMU-2022-0007 (122082600014-6))the National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment Fund(Grant No.6142910210208)the Stability Support Fund(Grant No. WDZC-HGD-2022-05)of Harbin Institute of Technology of PR China。
文摘The effect of protons(E = 100 keV,F = 5×10^(15) cm^(-2)) exposure on the diffuse reflectance spectra of the SiO_(2 )with different size particles in wavelength range from 250 to 2500 nm have been investigated.Particles were nanosphere,submicrosphere,microsphere and submacrosphere,as well as solid micro-and nanocrystals.The synthesis of the particles was carried out by the formation of silica shells and dissolution of the polystyrene core particles.The surface morphology,surface area and crystal structure of the particles have been investigated.When evaluating the changes of the solar absorptance,it was found that the radiation stability of the micro-and submacro-hollow particles is higher than that of the other nanostructured particles,except for solid microcrystals.The low radiation stability of the hollow microparticles is due to the large void inside the hollow particles where radiation defects are not formed.
基金supported by the National Natural Science Foundation of China (Nos.U22B6004,51974341)State Key Laboratory of Deep Oil and Gas (No.SKLDOG2024-ZYTS-14)the Fundamental Research Funds for the Central Universities (No.20CX06070A)。
文摘The efficient pyrolysis and conversion of organic matter in organic-rich shale,as well as the effective recovery of pyrolysis shale oil and gas,play a vital role in alleviating energy pressure.The state of carbon dioxide(CO_(2))in the pyrolysis environment of shale reservoirs is the supercritical state.Its unique supercritical fluid properties not only effectively heat organic matter,displace pyrolysis products and change shale pore structure,but also achieve carbon storage to a certain extent.Shale samples were made into powder and three sizes of cores,and nitrogen(N_(2))and supercritical carbon dioxide(ScCO_(2))pyrolysis experiments were performed at different final pyrolysis temperatures.The properties and mineral characteristics of the pyrolysis products were studied based on gas chromatography analysis,Xray diffraction tests,and mass spectrometry analysis.Besides,the pore structure characteristics at different regions of cores before and after pyrolysis were analyzed using N_(2) adsorption tests to clarify the impact of fracturing degree on the pyrolysis effect.The results indicate that the optimal pyrolysis temperature of Longkou shale is about 430℃.Compared with N_(2),the oil yield of ScCO_(2) pyrolysis is higher.The pyrolysis oil obtained by ScCO_(2) extraction has more intermediate fractions and higher relative molecular weight.The ScCO_(2) can effectively improve the pore diameter of shale and its effect is better than that of N_(2).The micropores are produced in shale after pyrolysis,and the macropores only are generated in ScCO_(2) pyrolysis environments with temperatures greater than 430℃.The pore structure has different development characteristics at different pyrolysis temperatures,which are mainly affected by the pressure holding of volatile matter and products blocking.Compared to the surface of the core,the pore development effect inside the core is better.With the decrease in core size,the pore diameter,specific surface area,and pore volume of cores all increase after pyrolysis.
基金Project(2009B010100001) supported by the Key Academic Program of the 3rd Phase "211 Project" of South China Agricultural University, ChinaProject(2007B030103019) supported by Guangdong Science and Technology Development Foundation, China
文摘Neodymium doping titania was loaded to silicon dioxide to prepare Nd/TiO2-SiO2 by sol-gel method and Nd/TiO2-SiO2 was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR) and diffuse reflectance spectra (DRS). Photocatalytic activities of Nd/TiO2-SiO2 with different neodymium contents were evaluated by degradation of methyl orange. The light absorption of Nd/TiO2-SiO2 increased with increasing doping neodymium in a visible light range of 388-619 nm, and Nd doping was in favor of decreasing the recombination of photo-generated electrons with holes. Nd and SiO2 improved the photocatalytic activity of TiO2. The optimal molar fraction of Nd to Ti was 0.1%, and the optimum calcination temperature was 600 ℃. The highest degradation rate of methyl orange was 82.9% after irradiation for 1 h.
基金This study is supported by Jilin Forestry Group Co.
文摘The roots of 200 one-year-old Changbai Larch (Larix olgensis) seedlings were soaked for 6 hours at the TMS concentrations of 2000, 1000, 500, 250, 125, and 62 μL·L?1. Mean seedling height, root collar diameter, main root length and number of lateral roots were measured every 15 days during growing season from May 30 to Oct. 20. Experimental results showed that TMS treatments greatly promoted seedling growth and improved seedling quality. The treatment by 500 μL·L?1 TMS produced the best result, for which the mean height, root collar diameter, main root length, and the number of lateral roots of seedlings were increased by 42.5%, 30.7%, 14.0%, and 31.6%, respectively, compared to that of the control seedlings. As to seedling quality, grade-I seedling and grade-II seedlings were fifty-fifty, and no grade-III seedlings was found. The treatment by 500 μL·L?1 TMS resulted in the highest chlorophyll concentration. Keywords Changbai Larch - Larix olgensis - Seedling production - Nanostructured silicon dioxide CLC number S143.8 Document code B Foundation item: This study is supported by Jilin Forestry Group Co.Biography: LIN Baoshan (1955-), male, Associate professor at the college of forestry, Beihua University, Jilin City 132011, Jilin Province, P.R China.Responsible editor: Chai Ruihai.
文摘Based on the composite modification technology of the surface of nano Silicondioxide by non-soap emulsion polymerization, it is verified that there are polymer grafted on thesurface of nano silicon dioxide. The modification mechanism and the bonding status on the surface ofnano silicon dioxide after modification were suggested via the results of the infrared spectrum,transmission electronic microscope photograph and X-ray photoelectron spectrum. The hydroxyl formedby hydrolyzing of silane coupling agent reacts with hydroxyl on the surface of nano silicon dioxideto form Si-O-Si bonds by losing water molecules and hence the double bonds are introduced onto thesurface of nano silicon dioxide. The surface of nano silicon dioxide is grafted with polymer throughfree radical polymerization between the double bonds on the surface of nano silicon dioxide andstyrene under the action of initiating agent. The dispersibility of nano silicon dioxide and thecontrollability of surface modification of nano silicon dioxide can be greatly improved by themodification process.
文摘Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared (FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion.
文摘This paper developed a sensitive and efficient analytical method for triclocarban (TCC), triclosan (TCS) and Methyl-triclosan (MTCS) determination in environmental water, which involves enrichment by using silicon dioxide/polystyrene composite microspheres solid-phase extraction and detection with HPLC-ESI-MS. The influence of several operational parameters, including the eluant and its volume, the flow rate and acidity of water sample were investigated and optimized. Under the optimum conditions, the limits of detection were 1.0 ng/L, 2.5 and 4.5 ng/L for TCC, TCS, and MTCS, respectively. The linearity of the method was observed in the range of 5-2000 ng/L, with correlation coefficients (r2) >.99. The spiked recoveries of TCC, TCS and MTCS in water sampleswereachieved in the range of 89.5% -96.8% with RSD below 5.7%. The proposed method has been successfully applied to analyze real water samples and satisfactory results were achieved.
文摘Adsorption experiment from aqueous solutions containing known amount of chromium (Cr) using hybrid membrane of chitosan and silicon dioxide was explored to evaluate the efficiency of the membrane as sorbent for Cr(VI). Some variable parameters such as pH, contact time and the dosage of the membrane were optimized. Adsorption isotherms of Cr(VI) onto the hybrid membrane were measured with varying initial concentrations under optimized condition. Furthermore, the sorption mechanism of Cr by the membrane was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. The surface morphology of the membrane was determined by SEM (scanning electron microscope) for material characterization. The concentrations of Cr in solution are determined by ICP-MS (inductively coupled plasma mass spectrometry). Hybrid membrane of chitosan and silicon dioxide can be an efficient sorbent for Cr(VI).
基金supported by the National Natural Science Foundation of China (Grant Nos. 90406007, 61076069, 60776053, and 10434010)the National Basic Research Program of China (Grant No. 2007CB936800)
文摘This paper describes a new method to create nanoscale SiO2 pits or channels using single-walled carbon nanotubes (SWNTs) in an HF solution at room temperature within a few seconds. Using aligned SWNT arrays, a pattern of nanoscale SiO2 channels can be prepared. The nanoscale SiO2 patterns can also be created on the surface of three- dimensional (3D) SiO2 substrate and even the nanoscale trenches can be constructed with arbitrary shapes. A possible mechanism for this enhanced etching of SiO2 has been qualitatively analysed using defects in SWNTs, combined with H3O+ electric double layers around SWNTs in an HF solution.
文摘Objective:To investigate the protective and therapeutic role of ginseng against silicon dioxide nanoparticles(SiO2NPs)-induced toxicity in the lungs.Methods:Sixty male rats were divided into five groups(n=12/group);group 1 was used as a control,group 2 received ginseng,group 3 was treated with SiO2NPs,and group 4 was pretreated with ginseng one week before SiO2NPs,while group 5 was given SiO2NPs one week before supplementation with ginseng.Animals were treated with both ginseng and SiO2NPs orally for five weeks.Real-time PCR was used to measure gene expression.Besides,DNA damage and cell cycle changes were determined by comet assay and flow cytometry,respectively.Histological study was also done to assess the effect of ginseng on SiO2NPs-induced toxicity.Results:SiO2NPs increased lipid peroxidation and decreased the activities of antioxidant enzymes.SiO2NPs induced apoptosis in lung tissues as revealed by upregulation of Bax and caspase 3 and downregulation of Bcl-2 as well as the induction of DNA damage.SiO2NPs also caused inflammation as indicated by upregulation of the inflammation-related genes[interleukin 1 beta(IL-1β),tumor necrosis factor-alpha(TNF-α),nuclear factor kappa B(NF-κB),cyclooxygenase 2(COX2),and transforming growth factor-beta 1(TGFβ1)]as well as cell cycle arrest in the G0/G1 phase of lung cells.Moreover,histopathological examination proved the biochemical and molecular perturbations that occurred due to SiO2NPs toxicity.However,ginseng alleviated SiO2NPs-induced toxicity in rat lung.Conclusions:Ginseng has a potent preventive and therapeutic effect and could be used in the treatment of SiO2NPs-induced pulmonary toxicity.
基金Funded by the National Natural Science Foundation of China(No.51308275)Natural Science Foundation of Liaoning Province(No.SY2016004)the Colleges and Universities Excellent Talents Supporting Plan Program of Liaoning Province(No.LJQ2015049)
文摘This work mainly involved the preparation of a nano-scale form-stable phase change material(PCM) consisting of capric and myristic acid(CA-MA) binary eutectic acting as thermal absorbing material and nano silicon dioxide(nano-SiO_2) serving as the supporting material. Industrial water glass for preparation of the nano silicon dioxide matrix and CA-MA eutectic mixture were compounded by single-step sol-gel method with the silane coupling agent. The morphology, chemical characterization and form stability property of the composite PCM were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier-transform infrared(FT-IR) spectroscopy and polarizing microscopy(POM). It was indicated that the average diameter of the composite PCM particle ranged from 30-100 nm. The CA-MA eutectic was immobilized in the network pores constructed by the Si-O bonds so that the composite PCM was allowed no liquid leakage above the melting temperature of the CA-MA eutectic. Differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA) measurement were conducted to investigate the thermal properties and stability of the composite PCM. From the measurement results, the mass fraction of the CA-MA eutectic in the composite PCM was about 40%. The phase change temperature and latent heat of the composite were determined to be 21.15 ℃ and 55.67 J/g, respectively. Meanwhile, thermal conductivity of the composite was measured to be 0.208 W·m^(-1)·K^(-1) by using the transient hot-wire method. The composite PCM was able to maintain the surrounding temperature close to its phase change temperature and behaved well in thermalregulated performance which was verified by the heat storage-release experiment. This kind of form-stable PCM was supposed to complete thermal insulation even temperature regulation by the dual effect of relatively low thermal conductivity and phase change thermal storage-release properties. So it can be formulated that the nanoscale CA-MA/SiO_2 composite PCM with the form-stable property, good thermal storage capacity and relatively low thermal conductivity can be applied for energy conservation as a kind of thermal functional material.
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.
基金supported by the Doctor Foundation of Lanzhou University of Technology
文摘The effects of silicon particle content and testing temperature on friction and wear properties of casting in-situ silicon particle reinforced ZA27 composites were investigated.The wear mechanisms were mainly discussed by observations of both worn surfaces and their side views.The results indicated that the variations of wear resistance with increasing of silicon particle content,at all of the testing temperatures applied,showed a similar tendency with a manner of non-monotonous change.It was surprised that the wear resistance decreased with the increase of silicon particle content from 2 vol.%to 5 vol.%,while it increased when the content was less than 2 vol.%or more than 5 vol.%.Similarly,the friction coefficient also did not change monotonously.The dominative wear mechanism changed from a relatively severe regime of plastic deformation accompanied by adhesion wear to a mild regime of smear,then to a very severe regime of severe plastic deformation induced wear,and finally again to a relatively mild regime of smear accompanied by abrasive wear as the silicon content increased.The wear resistance always decreased with elevating testing temperature,but the decrease ranges were different for the composites with different silicon contents.The friction coefficients changed irregularly for the different composites with the increase of testing temperature.Correspondingly,the wear mechanism alternated from a mild regime of smear accompanied by abrasive wear to a severe regime of plastic deformation accompanied by adhesion wear.
文摘In this work, we study the influence of the annealing treatment on the behaviour of titanium dioxide nanotube layers. The heat treatment protocol is actually the key parameter to induce stable oxide layers and needs to be better understood. Nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt% hydrofluoric acid solution during 20 minutes and then annealed in air atmosphere. In-situ X-ray diffraction analysis, coupled with thermogravimetry, gives us an inside on the oxidation behaviour of titanium dioxide nanotube layers compared to bulk reference samples. Structural studies were performed at 700°C for 12 h in order to follow the time consequences on the oxidation of the material, in sufficient stability conditions. In-situ XRD brought to light that the amorphous oxide layer induced by anodization is responsible for the simultaneous growths of anatase and rutile phase during the first 30 minutes of annealing while the bulk sample oxidation leads to the nucleation of a small amount of anatase TiO<sub>2</sub>. The initial amorphous oxide layer created by anodization is also responsible for the delay in crystallization compared to the bulk sample. Thermogravimetric analysis exhibits parabolic shape of the mass gain for both anodized and bulk sample;this kinetics is caused by the formation of a rutile external protective layer, as depicted by the associated in-situ XRD diffractograms. We recorded that titanium dioxide nanotube layers exhibit a lower mean mass gain than the bulk, because of the presence of an initial amorphous oxide layer on anodized samples. In-situ XRD results also provide accurate information concerning the sub-layers behavior during the annealing treatment for the bulk and nanostructured layer. Anatase crystallites are mainly localized at the interface oxide layer-metal and the rutile is at the external interface. Sample surface topography was characterized using scanning electron microscopy (SEM). As a probe of the photoactivity of the annealed TiO<sub>2</sub> nanotube layers, degradation of an acid orange 7 (AO7) dye solution and 4-chlorophenol under UV irradiation (at 365 nm) were performed. Such titanium dioxide nanotube layers show an efficient photocatalytic activity and the analytical results confirm the degradation mechanism of the 4-chlorophenol reported elsewhere.
基金the National Natural Science Foundation of China(Grant No.51776050).
文摘In recent years,there is a strong interest in thermal cloaking at the nanoscale,which has been achieved by using graphene and crystalline silicon films to build the nanoscale thermal cloak according to the classical macroscopic thermal cloak model.Silicon carbide,as a representative of the third-generation semiconductor material,has splendid properties,such as the high thermal conductivity and the high wear resistance.Therefore,in the present study,we build a nanoscale thermal cloak based on silicon carbide.The cloaking performance and the perturbation of the functional area to the external temperature filed are analyzed by the ratio of thermal cloaking and the response temperature,respectively.It is demonstrated that silicon carbide can also be used to build the nanoscale thermal cloak.Besides,we explore the influence of inner and outer radius on cloaking performance.Finally,the potential mechanism of the designed nanoscale thermal cloak is investigated by calculating and analyzing the phonon density of states(PDOS)and mode participation rate(MPR)within the structure.We find that the main reason for the decrease in the thermal conductivity of the functional area is phonon localization.This study extends the preparation method of nanoscale thermal cloaks and can provide a reference for the development of other nanoscale devices.
基金supported by the Opening Project of the State Key Laboratory of Advanced Chemical Power SourcesGuizhou Provincial Science and Technology Projects(QKHJC–ZK[2021]YB057)+2 种基金the Growth Project of Young Scientific and Technological Talents in Colleges and Universities of Guizhou Province(QKHJCKYZ[2021]252)the Reward and Subsidy Fund Project of Guizhou Education University(Z20210108)the Doctoral Program of Guizhou Education University(2019BS022)。
文摘The recognized energy storage mechanism of neutral aqueous zinc-manganese batteries is the co-insertion/extrusion of H^(+) and Zn^(2+) ions.However,modulating the kinetics of a single H^(+) or Zn^(2+) ion is scarce,which can provide meaningful insights into the energy storage mechanism of Zn ion batteries.Herein,a distinctive doubly electric field in-situ induced cationic anchoring of two-dimensional layered MnO_(2) is successfully constructed to modulate the insertion/extrusion of a single H^(+) or Zn^(2+) ion.As a result,regulating the intercalation of different metal ions can precisely achieve the accelerated induction for the individual H^(+) or Zn^(2+) ions intercalation/deintercalation.Moreover,the introduction of metal ions stabilizes the lattice distortion and alleviates the irreparable structural collapse,leading to an increase in the H^(+)/Zn^(2+) storage sites,efficiently diminishing the stagnation of the ordered structure and creating the more open channels,which is conducive to facilitating the diffusion of ions.This work delivers some innovative insights into pre-embedding strategies,and also serves as a precious reference for the cathode development of advanced aqueous batteries.