A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by ...Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ...In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.展开更多
Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the...Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.展开更多
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v...Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.展开更多
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha...Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.展开更多
Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to...Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to dynamic stress loading,the gradient stress distribution at a circular opening was first analyzed and the propagation of 1D stress wave in rock mass under gradient stress field was theoretically derived.By using an implicit to explicit solution method in LS-DYNA code,the dynamic mechanical behaviors of rock in gradient stress field were numerically investigated.The results indicate that the damage is mainly produced at or near the free face,partly due to the straight action of compressive stress wave and the tensile stress wave generated at the free face.The range of the induced damage zone is narrowed under the conditions of higher gradient stress rate and lower dynamic stress amplitude.However,under lower gradient stress field and higher dynamic stress,the damage becomes severer and wider with discontinuous failure regions.展开更多
A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacem...A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate.展开更多
The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, ...The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability.展开更多
In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced....In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.展开更多
Based on the stress distribution characteristics of rock burst multiple sites, the criterion of horizontal stress inducing layer dislocation rock burst was established. Accordingly, the influencing factors were analyz...Based on the stress distribution characteristics of rock burst multiple sites, the criterion of horizontal stress inducing layer dislocation rock burst was established. Accordingly, the influencing factors were analyzed. The analysis results indicate that the stress condition, edge of etastic zone depth, supporting strength, and the friction angle and cohesion among coal stratum, roof and floor are sensitive factors. By introducing double-couple model, the layer dislocation rock burst was explained and the energy radiation characteristics were analyzed. The SOS micro-seismic monitoring system was applied to observe the rock burst hazards about a mining face. The results show that P- and S-wave energy radiations produced by rock burst have directional characteristics. The energy radiation characteristics of the 22 rock bursts occurring on 79Z6 long-wall face are basically the same as theoretical results, that is, the ratio of S-wave energy of sensor 4 to 6 is about 1.5 and that of P-wave is smaller than 0.5. The consistency of the monitored characteristics of the energy radiation theoretically increases with the total energy increasing.展开更多
Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-indu...Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-induced stress gradient on the behaviour of the material is still unknown.An in-deep study on it will help to promote the understanding of material behaviour,especially for those cases related to unconventional gravity such as terrestrial ng physical modelling and extraterrestrial resource exploitation(g is the terrestrial gravitational acceleration).In this study,a high-order homogenization for granular materials is proposed at first,in which the stress gradient is drawn into the constitutive representation by adopting a representative volume element(RVE).The consolidation and shear strength behaviour of RVE are then investigated by performing numerical biaxial tests.The results show that all the compressibility,shear strength,shear stiffness,volumetric deformation,and critical state behaviour show a stress gradient dependence.A coupling between stress gradient,stress level,and material properties is also observed.These observations suggest that,besides the stress level,extra attention needs to be paid to material responses related to stress gradient during engineering practices.展开更多
To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeles...To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.展开更多
A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief lit...A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.展开更多
There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its sur...There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth's free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5- 6.0) can also cause Earth's free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.展开更多
In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in ...In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.展开更多
This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal ...This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.展开更多
A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very t...A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.展开更多
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Projects(52334003,52104111,52274249)supported by the National Natural Science Foundation of ChinaProject(2022YFC2903901)supported by the National Key R&D Project of ChinaProject(2024JJ4064)supported by the Natural Science Foundation of Hunan Province,China。
文摘Water-coupled charge blasting is a promising technique to efficiently break rock masses.In this study,numerical models of double boreholes with water-coupled charge are established using LS-DYNA and are calibrated by the tests of rock masses subjected to explosion loads to examine its performance.The crack levels of rock mass induced by water-coupled charge blasting and air-coupled charge blasting are first compared.It is found that water-coupled charge blasting is more appropriate to fracture deep rock mass than air-coupled charge blasting.In addition,the effects of rock properties,water-coupled charge coefficients,and borehole connection angles on the performance of water-coupled charge blasting are investigated.The results show that rock properties and water-coupled charge coefficients can greatly influence the crack and fragmentation levels of rock mass induced by water-coupled charge blasting under uniform and non-uniform in-situ stresses.However,changing borehole-connection angles can only affect crack and fragmentation levels of rock mass under non-uniform in-situ stresses but barely affect those under uniform in-situ stresses.A formula is finally proposed by considering the above-mentioned factors to provide the design suggestion of water-coupled charge blasting to fracture rock mass with different in-situ stresses.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金Project(41630642)supported by the Key Project of National Natural Science Foundation of ChinaProject(51974360)supported by the National Natural Science Foundation of ChinaProject(2018JJ3656)supported by the Natural Science Foundation of Hunan Province,China。
文摘In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance.
文摘Measuring in-situ stress by using the Kaiser effect in rocks has such advantages as timeefficiency, low cost and little limitation, but the precision of the method is dependent on rock properties and delay time of the measurement. In this paper, experiments on the Kaiser effect in limestones were performed, and it was found that the limestones had good ability to retain a memory of their recent stress history and high time-sensitivity. The longer the experiment was delayed from the extraction of the stone, the larger the Felicity ratio was. As the Felicity ratio approached l, significant Kaiser effect was observed. In-situ stress should be determined by the limestone measurements when the delay time was 40-120 days. Finally, the in-situ stress in a limestone formation could be successfully measured in practice.
基金provided by the Fundamental Research Funds for the Central Universities(No.2014QNA02)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT13098)+3 种基金the National Basic Research Program of China(No.2011CB201205)the National Natural Science Foundation of China(No.51404261)the Natural Science Foundation of Jiangsu Province(No.BK20140196)China PostdoctoralScience Foundation funded project(No.2014M551057)
文摘Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation.
基金the auspice of National Key Basic Project(973)(granted No.2008CB425702)National Science and Technology Project(granted No.SinoProbe-06)
文摘Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake.
基金Projects(51904101,51774131,51604109)supported by the National Natural Science Foundation of ChinaProject(2017M622524)supported by the Postdoctoral Science Foundation of China。
文摘Once an opening is created in deep underground,the stresses surrounding the opening will be redistributed,inducing a gradient stress field.To understand how the ground rock in such a gradient stress field responses to dynamic stress loading,the gradient stress distribution at a circular opening was first analyzed and the propagation of 1D stress wave in rock mass under gradient stress field was theoretically derived.By using an implicit to explicit solution method in LS-DYNA code,the dynamic mechanical behaviors of rock in gradient stress field were numerically investigated.The results indicate that the damage is mainly produced at or near the free face,partly due to the straight action of compressive stress wave and the tensile stress wave generated at the free face.The range of the induced damage zone is narrowed under the conditions of higher gradient stress rate and lower dynamic stress amplitude.However,under lower gradient stress field and higher dynamic stress,the damage becomes severer and wider with discontinuous failure regions.
基金financially supported by the Western Transport Technical Project of the Ministry of Transport, China (No. 2009318000046)
文摘A multivariable regression analysis of the in-situ stress field, which considers the non-linear deformation behavior of faults in practical projects, is presented based on a newly developed three-dimensional displacement discontinuity method (DDM) program. The Bar- ton-Bandis model and the Kulhaway model are adopted as the normal and the tangential deformation model of faults, respectively, where the Mohr-Coulomb failure criterion is satisfied. In practical projects, the values of the mechanical parameters of rock and faults are restricted in a bounded range for in-situ test, and the optimal mechanical parameters are obtained from this range by a loop. Comparing with the traditional finite element method (FEM), the DDM regression results are more accurate.
基金finically supported by the Sino Probe-06-01,Special Fund Research in the Public Interest (Grant No. 201211076)National Key Basic Project (973) (Grant No. 2008CB425702)
文摘The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability.
文摘In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.
基金Project(2012LWB63) supported by the Fundamental Research Funds for the Central Universities, ChinaProject(SZBF2011-6-B35) supported by the Priority Acadamic Program Development of Jiangsu Higher Education Institutions (PAPD),China
文摘Based on the stress distribution characteristics of rock burst multiple sites, the criterion of horizontal stress inducing layer dislocation rock burst was established. Accordingly, the influencing factors were analyzed. The analysis results indicate that the stress condition, edge of etastic zone depth, supporting strength, and the friction angle and cohesion among coal stratum, roof and floor are sensitive factors. By introducing double-couple model, the layer dislocation rock burst was explained and the energy radiation characteristics were analyzed. The SOS micro-seismic monitoring system was applied to observe the rock burst hazards about a mining face. The results show that P- and S-wave energy radiations produced by rock burst have directional characteristics. The energy radiation characteristics of the 22 rock bursts occurring on 79Z6 long-wall face are basically the same as theoretical results, that is, the ratio of S-wave energy of sensor 4 to 6 is about 1.5 and that of P-wave is smaller than 0.5. The consistency of the monitored characteristics of the energy radiation theoretically increases with the total energy increasing.
基金supported by the National Natural Science Foundation of China(Nos.41902273,41772338)the China Postdoctoral Science Foundation(No.2019M661986)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20190637)the Jiangsu Planned Projects for Postdoctoral Research Funds(No.2019K194)financial support by the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Nos.Z19007,Z19009)。
文摘Gravity is the most important load source in mining and geotechnical engineering,which causes both the stress level and stress gradient inside geomaterials.Different from the stress level,the influence of gravity-induced stress gradient on the behaviour of the material is still unknown.An in-deep study on it will help to promote the understanding of material behaviour,especially for those cases related to unconventional gravity such as terrestrial ng physical modelling and extraterrestrial resource exploitation(g is the terrestrial gravitational acceleration).In this study,a high-order homogenization for granular materials is proposed at first,in which the stress gradient is drawn into the constitutive representation by adopting a representative volume element(RVE).The consolidation and shear strength behaviour of RVE are then investigated by performing numerical biaxial tests.The results show that all the compressibility,shear strength,shear stiffness,volumetric deformation,and critical state behaviour show a stress gradient dependence.A coupling between stress gradient,stress level,and material properties is also observed.These observations suggest that,besides the stress level,extra attention needs to be paid to material responses related to stress gradient during engineering practices.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50490271)
文摘To solve the technical cruxes of the conventional system in deep rock mass, an automatic testing system for hydraulic fracturing that includes a single tube for hydraulic loop, a pressure-relief valve, central-tubeless packers, and a multichannel real-time data acquisition system was used for in-situ stresses measurement at great depths (over 1000 m) in a coalfield in Juye of Northern China. The values and orientations of horizontal principal stresses were determined by the new system. The virgin stress field and its distributing law were decided by the linear regression from the logged 37 points in seven boreholes. Besides, the typical boreholes arranged in both the adjacent zone and far away zone of the faults were analyzed, respectively. The results show that a stress concentration phenomenon and a deflection in the orientation of the maximal horizontal stress exist in the adjacent zone of the faults, which further provides theoretical basis for design and optimization of mining.
基金Project(2015CB057701)supported by the National Basic Research Program of ChinaProject(51308071)supported by the National Natural Science Foundation of China+3 种基金Project(13JJ4057)supported by Natural Science Foundation of Hunan Province,ChinaProject(201408430155)supported by the Foundation of China Scholarship CouncilProject(2015319825120)supported by the Traffic Department of Applied Basic Research,ChinaProject(12K076)supported by the Open Foundation of Innovation Platform in Hunan Provincial Universities,China
文摘A3D finite element model(FEM)with realistic field measurements of temperature distributions is proposed to investigate the thermal stress variation in the steel–concrete composite bridge deck system.First,a brief literaturereview indicates that traditional thermal stress calculation in suspension bridges is based on the2D plane structure with simplified temperature profiles on bridges.Thus,a3D FEM is proposed for accurate stress analysis.The focus is on the incorporation of full field arbitrary temperature profile for the stress analysis.Following this,the effect of realistic temperature distribution on the structure is investigated in detail and an example using field measurements of Aizhai Bridge is integrated with the proposed3D FEM model.Parametric studies are used to illustrate the effect of different parameters on the thermal stress distribution in the bridge structure.Next,the discussion and comparison of the proposed methodology and simplified calculation method in the standard is given.The calculation difference and their potential impact on the structure are shown in detail.Finally,some conclusions and recommendations for future bridge analysis and design are given based on the proposed study.
基金supported by Project of Ministry of Science and Technology:"Scientific drilling in Wenchuan earthquake fault zone"and Project of China Geological Survey(1212010916064)
文摘There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth's free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5- 6.0) can also cause Earth's free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.
基金supported by the National Natural Science Foundation of China (No. 50490271)
文摘In-situ stress measurement using the hydraulic fracturing technique was made at Wanfu Coal Mine in Shandong Province, China. To solve problems caused by great measuring depth and extra thick overburden soil layers in the mine, a series of improved techniques were developed for the traditional hydraulic fracturing technique and equipment to increase their pressure-enduring ability and to ensure safe and flexible removal of the sealing packers with other experimental apparatus. Successful in-situ stress measurement at 37 points within 7 boreholes, which were mostly over 1000 m deep, was completed. Through the measurement, detailed information of in-situ stress state has been provided for mining design of the mine. The improved hydraulic fracturing technique and equipment also provide reliable tools for in-situ stress measurement at great depth of other mines.
文摘This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.
文摘A simple and effective method for analyzing the stress distribution in a Functionally Gradient Material(FGM) layer on the su;face of a structural component is proposed in this paper. Generally, the FGM layer is very thin compared with the characteristic length of the structural component, and the nonhomogeneity exists only in the thin layer. Based on these features, by choosing a small parameter I which characterizes the stiffness of the layer relative to the component, and expanding the stresses and displacements on the two sides of the interface according to the parameter lambda, then asymptotically using the continuity conditions of the stresses and displacements on the interface, a decoupling computing process of the coupling control equations of the layer and the structural component is realized. Finally, two examples are given to illustrate the application of the method proposed.