Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reacti...Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.展开更多
Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃...Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:展开更多
Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield ...Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance.展开更多
The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstru...The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.展开更多
The high melting point and strong chemical bonding of NbB_(2)pose a great challenge to the preparation of high-density nanostructured NbB_(2)composite coating.Herein,we report a novel,simple,and efficient method to fa...The high melting point and strong chemical bonding of NbB_(2)pose a great challenge to the preparation of high-density nanostructured NbB_(2)composite coating.Herein,we report a novel,simple,and efficient method to fabricate in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating by plasma spraying Nb_(2)O_(5)–B_(4)C–Al composite powder,aiming at realizing the higher densification and ultra-fine microstructure of NbB_(2)composite coating.The microstructure and properties of in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating were studied comparatively with ex-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating(plasma spraying NbB_(2)–NbC–Al_(2)O_(3)composite powder).The reaction mechanism of Nb_(2)O_(5)–B_(4)C–Al composite powder in plasma jet was analyzed in detail.The results showed that the in-situ nanostructured NbB_(2)–NbC–Al_(2)O_(3)composite coating presented a lower porosity and superior performance including higher microhardness,toughness and wear resistance compared to the plasma sprayed ex-situ NbB_(2)–NbC–Al_(2)O_(3)coating and other boride composite coatings.Densification of the in-situ NbB_(2)–NbC–Al_(2)O_(3)coating was attributed to the low melting point of Nb_(2)O_(5)–B_(4)C–Al composite powder and the exothermic effect of in-situ reaction.The superior performance was ascribed to the density improvement and the strengthening and toughening effect of the nanosized phases.The in-situ reaction path could be expressed as:Nb_(2)O_(5)+Al®Nb+Al_(2)O_(3),and Nb+B_(4)C®NbB_(2)+NbC.展开更多
The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of m...The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of mechanical properties due to a tribological design limit their practical applications.Here,a robust self-lubricating coating was fabricated by an in-situ synthesis of MoS_(2)/C within inherent defects of thermally sprayed yttria-stabilized zirconia(YSZ)coatings.The edge-pinning by noncoherent endows hybrid coatings with excellent interfacial strength,increasing their hardness(HV)and cohesive strength.Furthermore,owing to the formation of a well-covered robust lubricating film at a frictional interface,a coefficient of friction(COF)can be reduced by 79.6%to 0.15,and a specific wear rate(W)drops from 1.36×10^(−3) to 6.27×10^(−7) mm^(3)·N^(−1)·m^(−1).Combining outstanding mechanical properties and tribological performance,the hybrid coating exhibits great application potential in controlling friction and wear.Importantly,this strategy of introducing the target materials into the inherent defects of the raw materials to improve the relevant properties opens new avenues for the design and preparation of composite materials.展开更多
Textured Ti2AlC lamellar composites have been successfully fabricated by a new method in the present work.The composites exhibit high compressive strength of ca 2 GPa,fracture toughness of 8.5 MPa m1/2(//c-axis),flexu...Textured Ti2AlC lamellar composites have been successfully fabricated by a new method in the present work.The composites exhibit high compressive strength of ca 2 GPa,fracture toughness of 8.5 MPa m1/2(//c-axis),flexural strength of 735 MPa(//c-axis)and high hardness of 7.9 GPa(//c-axis).The strengthening mechanisms were discussed.The sintering and densification process was investigated and crystal orientation and microstructure were studied by electron backscattered diffraction techniques.The synthesis temperature is reduced to 1200?C by using high surface-to-volume ratio Ti2AlC nano flakes.The Lotgering orientation factor of Ti2 AlC and Ti3 AlC2{00 l}planes in the textured top surface reaches 0.74 and 0.49,respectively.This new route may shed light on resolving the difficulties encountered in large scale fabrication of textured MAX phases.展开更多
基金Funded by the National Natural Science Foundation of China (No. 50572080)Doctoral Foundation of Wuhan University of Technology (No. 471-38650142)
文摘Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.
基金Project(2011CB605502)supported by the National Basic Research Program of ChinaProject(51001086)supported by the National Natural Science Foundation of China
文摘Microstructures of Ti2AlN/TiAl composites prepared by in-situ method were characterized in in-situ and aging treatment conditions and the nitride precipitation was investigated in Ti2AlN/TiAl composites aged at 900 ℃ for 24 h after being heat treated at 1400 ℃ for 0.5 h. The in-situ composites consist of γ+α2 lamellar colonies, equiaxed y grains and Ti2AlN reinforcements. Matrix with nearly fully lamellar structure formed after solution and subsequently aging treatment. With the increase of Ti2AlN content, the nearly fully lamellar structure becomes instable for the aged composites. According to TEM study, fine Ti2AlN precipitates are found to distribute at the grain boundaries of lamellar colony. Needle-like Ti3AlN precipitates arrange in line with growing axis parallel to [001] direction of the γ-TiAl matrix and another needle-like Ti3AlN precipitates with lager size distribute at the dislocations. Key words:
基金sponsored by the National Natural Science Foundation of China(21808120,21978148)。
文摘Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance.
基金This project was sponsored by "863" Project (No. 2003AA322020)
文摘The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD, SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3 grain in grain boundary, and improve the integral property of the material.
基金The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China(No.52072110)the Natural Science Foundation of Hebei Province(No.E2018202034).
文摘The high melting point and strong chemical bonding of NbB_(2)pose a great challenge to the preparation of high-density nanostructured NbB_(2)composite coating.Herein,we report a novel,simple,and efficient method to fabricate in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating by plasma spraying Nb_(2)O_(5)–B_(4)C–Al composite powder,aiming at realizing the higher densification and ultra-fine microstructure of NbB_(2)composite coating.The microstructure and properties of in-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating were studied comparatively with ex-situ NbB_(2)–NbC–Al_(2)O_(3)composite coating(plasma spraying NbB_(2)–NbC–Al_(2)O_(3)composite powder).The reaction mechanism of Nb_(2)O_(5)–B_(4)C–Al composite powder in plasma jet was analyzed in detail.The results showed that the in-situ nanostructured NbB_(2)–NbC–Al_(2)O_(3)composite coating presented a lower porosity and superior performance including higher microhardness,toughness and wear resistance compared to the plasma sprayed ex-situ NbB_(2)–NbC–Al_(2)O_(3)coating and other boride composite coatings.Densification of the in-situ NbB_(2)–NbC–Al_(2)O_(3)coating was attributed to the low melting point of Nb_(2)O_(5)–B_(4)C–Al composite powder and the exothermic effect of in-situ reaction.The superior performance was ascribed to the density improvement and the strengthening and toughening effect of the nanosized phases.The in-situ reaction path could be expressed as:Nb_(2)O_(5)+Al®Nb+Al_(2)O_(3),and Nb+B_(4)C®NbB_(2)+NbC.
基金support from the National Natural Science Foundation of China (51905212)Guangdong Key Laboratory of Modern Surface Engineering Technology (2020B1212060049)+2 种基金Science and Technology Project of Guangdong Academy (2021GDASYL-20210103062)Young Scientific and Technological Talents Promotion Project of Guangzhou Science and Technology Association (X20210201061)Foshan Taoyuan Institute of Advanced Manufacturing (TYKF202203003).
文摘The self-lubricating ceramic coatings that can control friction and wear have attracted researchers’widespread attention.However,the poor interfacial bonding between lubricants and ceramics and the deterioration of mechanical properties due to a tribological design limit their practical applications.Here,a robust self-lubricating coating was fabricated by an in-situ synthesis of MoS_(2)/C within inherent defects of thermally sprayed yttria-stabilized zirconia(YSZ)coatings.The edge-pinning by noncoherent endows hybrid coatings with excellent interfacial strength,increasing their hardness(HV)and cohesive strength.Furthermore,owing to the formation of a well-covered robust lubricating film at a frictional interface,a coefficient of friction(COF)can be reduced by 79.6%to 0.15,and a specific wear rate(W)drops from 1.36×10^(−3) to 6.27×10^(−7) mm^(3)·N^(−1)·m^(−1).Combining outstanding mechanical properties and tribological performance,the hybrid coating exhibits great application potential in controlling friction and wear.Importantly,this strategy of introducing the target materials into the inherent defects of the raw materials to improve the relevant properties opens new avenues for the design and preparation of composite materials.
基金financially supported by the National Key R&D Program of China(Nos.2017YFB0306201 and 2016YFB0701303).
文摘Textured Ti2AlC lamellar composites have been successfully fabricated by a new method in the present work.The composites exhibit high compressive strength of ca 2 GPa,fracture toughness of 8.5 MPa m1/2(//c-axis),flexural strength of 735 MPa(//c-axis)and high hardness of 7.9 GPa(//c-axis).The strengthening mechanisms were discussed.The sintering and densification process was investigated and crystal orientation and microstructure were studied by electron backscattered diffraction techniques.The synthesis temperature is reduced to 1200?C by using high surface-to-volume ratio Ti2AlC nano flakes.The Lotgering orientation factor of Ti2 AlC and Ti3 AlC2{00 l}planes in the textured top surface reaches 0.74 and 0.49,respectively.This new route may shed light on resolving the difficulties encountered in large scale fabrication of textured MAX phases.