Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD...Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.展开更多
In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced....In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.展开更多
Gel treatment has been widely applied in mature oilfields to improve sweep efficiency and control water production.Correct numerical simulation is of major importance to the optimization design and prediction of a suc...Gel treatment has been widely applied in mature oilfields to improve sweep efficiency and control water production.Correct numerical simulation is of major importance to the optimization design and prediction of a successful gel treatment.However,there exist many problems in current simulation studies in published literature.This paper first presents a comprehensive review on the major factors that have been considered at different gelation stages during gel treatment,the models used in the commercial/inhouse simulators,and current numerical simulation studies on both laboratory and field scales.Then we classify the current in-situ gel numerical simulation problems as 1,deficient model problem that has published numerical model but has not been applied in simulator and application studies;2,missing model problem that does not have published quantitative model;and 3,inaccurate application problem that does not consider the major factors of gel performance,based on the reasons from some questionable results of current simulation studies.Finally,we point out the major research efforts that should be made in the future to better simulate in-situ gel treatment process.The review indicates that numerous simulation studies using commercial software packages intend to predigest the gel treatment,many of which,however,ignore important mechanisms and mislead the operation of gel treatment.In fact,a full assessment of simulating in-situ gels cannot be achieved unless the quantitative models can be qualified in terms of transport and plugging mechanisms based on the experimental results.展开更多
This paper discusses some crucial problems arising in the implementation of the inelli-gent control of the vacuum distillation,such as the analysis of the plant characteristics,con-trol strategy selection,knowledge re...This paper discusses some crucial problems arising in the implementation of the inelli-gent control of the vacuum distillation,such as the analysis of the plant characteristics,con-trol strategy selection,knowledge representation,specification of maintenance strategy forthe knowledge base and accomplishment of the control system,etc.At the same time,wegive a concrete system along with its results and evaluations.展开更多
Since the discovery in 2011,MXenes have become the rising star in the field of two-dimensional materials.Benefiting from the metallic-level conductivity,large and adjustable gallery spacing,low ion diffusion barrier,r...Since the discovery in 2011,MXenes have become the rising star in the field of two-dimensional materials.Benefiting from the metallic-level conductivity,large and adjustable gallery spacing,low ion diffusion barrier,rich surface chemistry,superior mechanical strength,MXenes exhibit great application prospects in energy storage and conversion,sensors,optoelectronics,electromagnetic interference shielding and biomedicine.Nevertheless,two issues seriously deteriorate the further development of MXenes.One is the high experimental risk of common preparation methods such as HF etching,and the other is the difficulty in obtaining MXenes with controllable surface groups.Recently,Lewis acidic etching,as a brand-new preparation strategy for MXenes,has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations.However,a comprehensive review of Lewis acidic etching method has not been reported yet.Herein,we first introduce the Lewis acidic etching from the following four aspects:etching mechanism,terminations regulation,in-situ formed metals and delamination of multi-layered MXenes.Further,the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion,sensors and microwave absorption are carefully summarized.Finally,some challenges and opportunities of Lewis acidic etching strategy are also presented.展开更多
文摘Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures.
文摘In-situ stress is an essential parameter for design and construction of most engineering projects that involve excavation in rocks. Progress in in-situ stress measurement from the 1950s in China is briefly introduced. Stress relief by overcoring technique and hydraulic fracturing: technique are the two main techniques for in-situ stress measurement in China at present. To make them suitable for application at great depth and to increase their measuring reliability and accuracy, a series of techniques have been developed. Applications and achievements of in-situ stress measurement in Chinese rock engineering, including mining, geotechnical and hydropower engineering, and earthquake prediction, are introduced. Suggestions for further development of in-situ stress measurement are also proposed.
文摘Gel treatment has been widely applied in mature oilfields to improve sweep efficiency and control water production.Correct numerical simulation is of major importance to the optimization design and prediction of a successful gel treatment.However,there exist many problems in current simulation studies in published literature.This paper first presents a comprehensive review on the major factors that have been considered at different gelation stages during gel treatment,the models used in the commercial/inhouse simulators,and current numerical simulation studies on both laboratory and field scales.Then we classify the current in-situ gel numerical simulation problems as 1,deficient model problem that has published numerical model but has not been applied in simulator and application studies;2,missing model problem that does not have published quantitative model;and 3,inaccurate application problem that does not consider the major factors of gel performance,based on the reasons from some questionable results of current simulation studies.Finally,we point out the major research efforts that should be made in the future to better simulate in-situ gel treatment process.The review indicates that numerous simulation studies using commercial software packages intend to predigest the gel treatment,many of which,however,ignore important mechanisms and mislead the operation of gel treatment.In fact,a full assessment of simulating in-situ gels cannot be achieved unless the quantitative models can be qualified in terms of transport and plugging mechanisms based on the experimental results.
基金Supported by the High Technology Research and Development Programme of ChinaNational Natural Science Foundation of China and China Petro-chemical Corporation.
文摘This paper discusses some crucial problems arising in the implementation of the inelli-gent control of the vacuum distillation,such as the analysis of the plant characteristics,con-trol strategy selection,knowledge representation,specification of maintenance strategy forthe knowledge base and accomplishment of the control system,etc.At the same time,wegive a concrete system along with its results and evaluations.
基金supported by the Highstar Corporation HSD20210118Taihu Electric Corporation 0001。
文摘Since the discovery in 2011,MXenes have become the rising star in the field of two-dimensional materials.Benefiting from the metallic-level conductivity,large and adjustable gallery spacing,low ion diffusion barrier,rich surface chemistry,superior mechanical strength,MXenes exhibit great application prospects in energy storage and conversion,sensors,optoelectronics,electromagnetic interference shielding and biomedicine.Nevertheless,two issues seriously deteriorate the further development of MXenes.One is the high experimental risk of common preparation methods such as HF etching,and the other is the difficulty in obtaining MXenes with controllable surface groups.Recently,Lewis acidic etching,as a brand-new preparation strategy for MXenes,has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations.However,a comprehensive review of Lewis acidic etching method has not been reported yet.Herein,we first introduce the Lewis acidic etching from the following four aspects:etching mechanism,terminations regulation,in-situ formed metals and delamination of multi-layered MXenes.Further,the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion,sensors and microwave absorption are carefully summarized.Finally,some challenges and opportunities of Lewis acidic etching strategy are also presented.