Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the kn...Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.展开更多
Conversion of biomass to chemicals or fuels under mild condition is still a challenge. As a platform molecule for chemicals and fuels, levulinic acid (LA) has been prepared by lique-faction of biomass at high pressu...Conversion of biomass to chemicals or fuels under mild condition is still a challenge. As a platform molecule for chemicals and fuels, levulinic acid (LA) has been prepared by lique-faction of biomass at high pressure. In order to carry out the conversion from wheat straw to LA at atmosphere pressure, continuous extraction of the reactive system by an organic solvent with a higher density than that of water was utilized for degradation of pretreated biomass. Yields of LA were measured by means of gas chromatography-mass spectrometry and nuclear magnetic resonance. The results revealed that a maximum yield of 30.66% of LA can be obtained from wheat straw. In addition, the effects of biomass pretreated conditions on the LA conversion have been studied. The study provides a new route to convert biomass to valuable chemicals at atmosphere pressure.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05046,2017ZX05001)RIPED Scientific Research and Technology Development Project(2018ycq02)。
文摘Because of the differences of hydrocarbon accumulation between in-source and out-of-source oil pools, the demand for source kitchen is different. Based on the establishment of source-to-reservoir correlation in the known conventional accumulations, and the characteristics of shale oil source kitchens as well, this paper discusses the differences of source kitchens for the formation of both conventional and shale oils. The formation of conventional oil pools is a process of hydrocarbons enriching from disperse state under the action of buoyancy, which enables most of the oil pools to be formed outside the source kitchens. The source rock does not necessarily have high abundance of organic matter, but has to have high efficiency and enough amount of hydrocarbon expulsion. The TOC threshold of source rocks for conventional oil accumulations is 0.5%, with the best TOC window ranging from 1% to 3%. The oil pools formed inside the source kitchens, mainly shale oil, are the retention of oil and gas in the source rock and there is no large-scale hydrocarbon migration and enrichment process happened, which requires better quality and bigger scale of source rocks. The threshold of TOC for medium to high maturity of shale oil is 2%, with the best range falling in 3%–5%. Medium to low mature shale oil resource has a TOC threshold of 6%, and the higher the better in particular. The most favorable kerogen for both high and low-mature shale oils is oil-prone type of I–II1. Carrying out source rock quality and classification evaluation and looking for large-scale and high-quality source rock enrichment areas are a scientific issue that must be paid attention to when exploration activity changes from out-of-source regions to in-source kitchen areas. The purpose is to provide theoretical guidance for the upcoming shale oil enrichment area selection, economic discovery and objective evaluation of resource potential.
文摘Conversion of biomass to chemicals or fuels under mild condition is still a challenge. As a platform molecule for chemicals and fuels, levulinic acid (LA) has been prepared by lique-faction of biomass at high pressure. In order to carry out the conversion from wheat straw to LA at atmosphere pressure, continuous extraction of the reactive system by an organic solvent with a higher density than that of water was utilized for degradation of pretreated biomass. Yields of LA were measured by means of gas chromatography-mass spectrometry and nuclear magnetic resonance. The results revealed that a maximum yield of 30.66% of LA can be obtained from wheat straw. In addition, the effects of biomass pretreated conditions on the LA conversion have been studied. The study provides a new route to convert biomass to valuable chemicals at atmosphere pressure.