We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced ...We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61378094)
文摘We study a three-mode double-cavity optomechanical system in which an oscillating membrane of perfect reflection is inserted between two fixed mirrors of partial transmission. We find that electromagnetically induced transparency (EIT) can be realized and controlled in this optomechanical system by adjusting the relative intensity and the relative phase between left-hand and right-hand input (probe and coupling) fields. In particular, one perfect EIT window is seen to occur when the two probe fields are exactly out of phase and the EIT window's width is very sensitive to the relative intensity of two coupling fields. Our numerical findings may be extended to achieve optomechanical storage and switching schemes applicable in quantum information processing.
基金supported by the National Natural Science Foundation of China(62375079,52072117,62375081,52221001,51972105,62090035,U19A2090,and 61905071)the National Key R&D Program of China(2022YFA1204300)+4 种基金the Key Program of Science and Technology Department of Hunan Province(2019XK2001 and 2020XK2001)the Key Research and Development Plan of Hunan Province(2023GK2012)the Open Project Program of Key Laboratory of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences(22ZS01)the Hunan Provincial Natural Science Foundation of China(2021JJ30132)the China Scholarship Council.