Oxidative hair dyes containingρ-phenylenediamine(PPD)are reported to induce an allergic reaction by promoting oxidative stress when absorbed through the skin.Despite the associated risk,these hair dyes remain popular...Oxidative hair dyes containingρ-phenylenediamine(PPD)are reported to induce an allergic reaction by promoting oxidative stress when absorbed through the skin.Despite the associated risk,these hair dyes remain popular owing to their convenience and sharpness of color.This makes it important to minimize the cytotoxicity and oxidative stress induced by PPD-containing hair dyes.Ecklonia cava extract has been evaluated in different studies for its protective effects against external stress in fibroblasts and keratinocytes.Our study was aimed at using in-vitro and in-vivo models to investigate the extract’s effects on cytotoxicity of and oxidative stress induced by PPD-containing hair dyes.Analysis of CIEL*a*b*Color space was first used to determine the range of E.cava extract that would not interfere with the coloring ability of the dye upon addition.Subsequently,the set ranges of E.cava extract(5% and 7%)were added to the hair dye and their toxicity assessed by evaluating the viability of fibroblasts and keratinocytes.The effects on developmental phenotypes and induction of oxidative stress by hair dye were evaluated and compared with those of hair dyes containing different contents of E.cava extract using an in-vivo zebrafish model.Our results showed that E.cava extract in hair dye could significantly decrease the cytotoxicity and levels of oxidative stress caused by hair dyes containing PPD in both in-vitro and in-vivo models.These results suggest that the addition of 7% E.cava extract to 250μg/mL hair dye does not interfere with the coloring ability of the dye while showing significant protective eff ects against the hair dye.The study proposes that the use of E.cava extract as an adduct to hair dyes containing PPD reduces the cytotoxicity and oxidative stress induced by these hair dyes.展开更多
African trypanosomosis had caused lots of havocs to both humans and animals over a century with successes and failure in curtailing it. This study was aimed at screening medicinal plant, Terminalia chebula dried fruit...African trypanosomosis had caused lots of havocs to both humans and animals over a century with successes and failure in curtailing it. This study was aimed at screening medicinal plant, Terminalia chebula dried fruits against Trypanosoma evansi for trypanocidal activity. Twenty grams of powdered Terminalia chebula dried fruits was cold extracted with methanol. Obtained MPE (methanolic plant extract) was in vitro tested against Trypanosoma brucei (1 × 10^6 trypanosomes/mL of the medium in each ELISA plate wells) at concentrations (250~1,000 μg/mL) on Vero cells grown in DMEM (Debecco's Modified Eagle Medium) in appropriate conditions for trypanocidal activity. In-vitro cytotoxicity test of MPE of Terminalia chebula was conducted on Vero cells grown in DMEM. In-vivo assay for trypanocidal activity, each mouse was inoculated with 1 × 10^4/mL of trypanosomes and treated (48 h post inoculation) with MPE of Terminalia chebula at concentrations (12.5, 25, 50, 100 and 200 mg/kg body weight) were administered at dose rate of 100 BL per mouse via intraperitoneal route to different groups of mice, 6 mice per concentration. In-vitro cytotoxicity test was done on Veto cells at concentrations (1.58~100 μg/mL) of MPE of Terminalia chebula. Results of in-vitro trypanocidal activity varied from immobilization, reduction and to the killing of the trypanosomes. At 250 μg/mL ofMPE ofTerminalia chebula dried fruits, there was significant trypanocidal activity at 4 h of incubation and trypanosomes were not detected in corresponding ELISA plate wells at 5 h of incubation, which was statistically equivalent to reference drug, diminazine aceturate (50 μL/mL) at 4 h of incubation. Results of in-vivo trypanocidal activity revealed that at concentrations (l 2.5~25 mg/kg body weight) of MPE of Terrninalia chebula, mice in these groups survived for 6 days. While at 50 and 100 to 200 mg/kg body weight, mice in these groups survived up to 7 and 8 days, respectively. In-vitro cytotoxicity test showed that all concentrations of MPE of Terminalia chenula and diminazine aceturate were cytotoxic to cells except at 1.56 μL/mL and 6.25 μL/mL. In conclusion, MPE of Terminalia chebula dried fruits possessed trypanocidal compounds. Further study (bioassay-guided purification) is required to know the full potential of Terrninalia chebula as future trypanocide candidate.展开更多
Recently,developing bioactive and biocompatible materials based on Mg and Mg-alloys for implant applications has drawn attention among researchers owing to their suitable body degradability.Implementing Mg and its all...Recently,developing bioactive and biocompatible materials based on Mg and Mg-alloys for implant applications has drawn attention among researchers owing to their suitable body degradability.Implementing Mg and its alloys reduces the risk of long-term incompatibility with tissues because of their close mechanical properties and no need for re-operation to remove the implant.Nevertheless,the degradation rate of the implant needs to be controlled because production of hydrogen gas and accumulation of its bubbles increases local pH around the implants.To confine the integrity of implants and the body,the corrosion concern in the body fluid requires to be addressed.Surface modification as one of the effective strategies can improve corrosion resistance.Besides,it creates a suitable surface for bone grafting and cell growth.The development of proper surface-coated implants needs appropriate techniques and approaches.Plasma electrolytic oxidation(PEO)coating can provide long-term protection by providing a ceramic layer and improving the implant’s biocompatibility.Herein,a general review of in-vivo and in-vitro evaluation of PEO coatings on Mg and Mg-alloys has been carried out.Recent advances in surface modification on Mg and Mg-alloys have been discussed,however,the need for reliable laboratory models to predict in-vivo degradation is still valid.展开更多
Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) an...Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) induced mutants of cauliflower were created and screened for drought and salt stress tolerance. The highly tolerant mutants were selected, regenerated by tissue culture techniques, screened again for drought and salt tolerance under in-vitro and in-vivo conditions, correlated the response of in-vitro and in-vivo plants within a clone. Free proline levels in clones were correlated with stress tolerance. Results confirmed the persistence of mutations in clones with enhanced resistance levels to stresses over control plants. The regenerated in-vitro and in-vivo plants within a clone showed a positive significant correlation for drought (R2 = 0.663) and salt (R2 = 0.647) resistance that confirms the stability of mutation in clones after generations. Proline showed a positive and significant correlation with drought (R2 = 0.524) and salt (R2 = 0.786) tolerance. Conclusively, drought and salt resistance can be successfully enhanced in cauliflower by chemical mutagenesis. Further molecular analysis is recommended to study these mutants.展开更多
Nanotoxicology has become the subject of intense research for more than two decades.Thousands of articles have been published but the space in understanding the nanotoxicity mechanism and the assessment is still uncle...Nanotoxicology has become the subject of intense research for more than two decades.Thousands of articles have been published but the space in understanding the nanotoxicity mechanism and the assessment is still unclear.Recent researches clearly show potential benefits of nanomaterials(NMs)in diagnostics and treatment,targeted drug delivery,and tissue engineering owing to their excellent physicochemical properties.However,these NMs display hazardous health effect then to the greater part of the materials because of small size,large surface area-to-volume ratio,quantum size effects,and environmental factors.Nowadays,a large number of NMs are used in industrial products including several medical applications,consumer,and healthcare products.However,they came into the environment without any safety test.The measurement of toxicity level has become important because of increasing toxic effects on living organisms.New realistic mechanism-based strategies are still needed to determine the toxic effects of NMs.For the assessment of NMs toxicity,reliable and standardized procedures are necessary.This review article provides systematic studies on toxicity of NMs involving manufacturing,environmental factors,eco-toxic and genotoxic effects,some parameters which have been ignored of NMs versus their biological counterparts,cell heterogeneity,and their current challenges and future perspectives.展开更多
文摘Oxidative hair dyes containingρ-phenylenediamine(PPD)are reported to induce an allergic reaction by promoting oxidative stress when absorbed through the skin.Despite the associated risk,these hair dyes remain popular owing to their convenience and sharpness of color.This makes it important to minimize the cytotoxicity and oxidative stress induced by PPD-containing hair dyes.Ecklonia cava extract has been evaluated in different studies for its protective effects against external stress in fibroblasts and keratinocytes.Our study was aimed at using in-vitro and in-vivo models to investigate the extract’s effects on cytotoxicity of and oxidative stress induced by PPD-containing hair dyes.Analysis of CIEL*a*b*Color space was first used to determine the range of E.cava extract that would not interfere with the coloring ability of the dye upon addition.Subsequently,the set ranges of E.cava extract(5% and 7%)were added to the hair dye and their toxicity assessed by evaluating the viability of fibroblasts and keratinocytes.The effects on developmental phenotypes and induction of oxidative stress by hair dye were evaluated and compared with those of hair dyes containing different contents of E.cava extract using an in-vivo zebrafish model.Our results showed that E.cava extract in hair dye could significantly decrease the cytotoxicity and levels of oxidative stress caused by hair dyes containing PPD in both in-vitro and in-vivo models.These results suggest that the addition of 7% E.cava extract to 250μg/mL hair dye does not interfere with the coloring ability of the dye while showing significant protective eff ects against the hair dye.The study proposes that the use of E.cava extract as an adduct to hair dyes containing PPD reduces the cytotoxicity and oxidative stress induced by these hair dyes.
文摘African trypanosomosis had caused lots of havocs to both humans and animals over a century with successes and failure in curtailing it. This study was aimed at screening medicinal plant, Terminalia chebula dried fruits against Trypanosoma evansi for trypanocidal activity. Twenty grams of powdered Terminalia chebula dried fruits was cold extracted with methanol. Obtained MPE (methanolic plant extract) was in vitro tested against Trypanosoma brucei (1 × 10^6 trypanosomes/mL of the medium in each ELISA plate wells) at concentrations (250~1,000 μg/mL) on Vero cells grown in DMEM (Debecco's Modified Eagle Medium) in appropriate conditions for trypanocidal activity. In-vitro cytotoxicity test of MPE of Terminalia chebula was conducted on Vero cells grown in DMEM. In-vivo assay for trypanocidal activity, each mouse was inoculated with 1 × 10^4/mL of trypanosomes and treated (48 h post inoculation) with MPE of Terminalia chebula at concentrations (12.5, 25, 50, 100 and 200 mg/kg body weight) were administered at dose rate of 100 BL per mouse via intraperitoneal route to different groups of mice, 6 mice per concentration. In-vitro cytotoxicity test was done on Veto cells at concentrations (1.58~100 μg/mL) of MPE of Terminalia chebula. Results of in-vitro trypanocidal activity varied from immobilization, reduction and to the killing of the trypanosomes. At 250 μg/mL ofMPE ofTerminalia chebula dried fruits, there was significant trypanocidal activity at 4 h of incubation and trypanosomes were not detected in corresponding ELISA plate wells at 5 h of incubation, which was statistically equivalent to reference drug, diminazine aceturate (50 μL/mL) at 4 h of incubation. Results of in-vivo trypanocidal activity revealed that at concentrations (l 2.5~25 mg/kg body weight) of MPE of Terrninalia chebula, mice in these groups survived for 6 days. While at 50 and 100 to 200 mg/kg body weight, mice in these groups survived up to 7 and 8 days, respectively. In-vitro cytotoxicity test showed that all concentrations of MPE of Terminalia chenula and diminazine aceturate were cytotoxic to cells except at 1.56 μL/mL and 6.25 μL/mL. In conclusion, MPE of Terminalia chebula dried fruits possessed trypanocidal compounds. Further study (bioassay-guided purification) is required to know the full potential of Terrninalia chebula as future trypanocide candidate.
文摘Recently,developing bioactive and biocompatible materials based on Mg and Mg-alloys for implant applications has drawn attention among researchers owing to their suitable body degradability.Implementing Mg and its alloys reduces the risk of long-term incompatibility with tissues because of their close mechanical properties and no need for re-operation to remove the implant.Nevertheless,the degradation rate of the implant needs to be controlled because production of hydrogen gas and accumulation of its bubbles increases local pH around the implants.To confine the integrity of implants and the body,the corrosion concern in the body fluid requires to be addressed.Surface modification as one of the effective strategies can improve corrosion resistance.Besides,it creates a suitable surface for bone grafting and cell growth.The development of proper surface-coated implants needs appropriate techniques and approaches.Plasma electrolytic oxidation(PEO)coating can provide long-term protection by providing a ceramic layer and improving the implant’s biocompatibility.Herein,a general review of in-vivo and in-vitro evaluation of PEO coatings on Mg and Mg-alloys has been carried out.Recent advances in surface modification on Mg and Mg-alloys have been discussed,however,the need for reliable laboratory models to predict in-vivo degradation is still valid.
文摘Investigation was made to confirm the stability of drought and salt stress tolerance in cauliflower (Brassica oleracea var.botrytis) mutants after regeneration and micropropagation. The N-nitroso-N-ethyleurea (NEU) and N-nitroso-N-methylurea (NMU) induced mutants of cauliflower were created and screened for drought and salt stress tolerance. The highly tolerant mutants were selected, regenerated by tissue culture techniques, screened again for drought and salt tolerance under in-vitro and in-vivo conditions, correlated the response of in-vitro and in-vivo plants within a clone. Free proline levels in clones were correlated with stress tolerance. Results confirmed the persistence of mutations in clones with enhanced resistance levels to stresses over control plants. The regenerated in-vitro and in-vivo plants within a clone showed a positive significant correlation for drought (R2 = 0.663) and salt (R2 = 0.647) resistance that confirms the stability of mutation in clones after generations. Proline showed a positive and significant correlation with drought (R2 = 0.524) and salt (R2 = 0.786) tolerance. Conclusively, drought and salt resistance can be successfully enhanced in cauliflower by chemical mutagenesis. Further molecular analysis is recommended to study these mutants.
基金the Department of Chemistry,Amity Institute of Applied Sciences,Amity University Uttar Pradesh,India,for allowing them to complete their study and for offering the chance to do so through a non-teaching credit course(NTCC).
文摘Nanotoxicology has become the subject of intense research for more than two decades.Thousands of articles have been published but the space in understanding the nanotoxicity mechanism and the assessment is still unclear.Recent researches clearly show potential benefits of nanomaterials(NMs)in diagnostics and treatment,targeted drug delivery,and tissue engineering owing to their excellent physicochemical properties.However,these NMs display hazardous health effect then to the greater part of the materials because of small size,large surface area-to-volume ratio,quantum size effects,and environmental factors.Nowadays,a large number of NMs are used in industrial products including several medical applications,consumer,and healthcare products.However,they came into the environment without any safety test.The measurement of toxicity level has become important because of increasing toxic effects on living organisms.New realistic mechanism-based strategies are still needed to determine the toxic effects of NMs.For the assessment of NMs toxicity,reliable and standardized procedures are necessary.This review article provides systematic studies on toxicity of NMs involving manufacturing,environmental factors,eco-toxic and genotoxic effects,some parameters which have been ignored of NMs versus their biological counterparts,cell heterogeneity,and their current challenges and future perspectives.